• Ajami, N. K., Q. Duan, and S. Sorooshian, 2007: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcoba, M., M. Gosset, M. Kacou, F. Cazenave, and E. Fontaine, 2016: Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part II: A simple brightband method to infer the density of icy hydrometeors. J. Appl. Meteor. Climatol., 55, 251263, https://doi.org/10.1175/JAMC-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., and W. F. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour., 51, 357366, https://doi.org/10.1016/j.advwatres.2012.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., and A. Binley, 1992: The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Processes, 6, 279298, https://doi.org/10.1002/hyp.3360060305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouvier, C., and M. Desbordes, 1990: Un modèle de ruissellement urbain pour les villes d’Afrique de l’Ouest. Hydrol. Cont., 5, 7786.

    • Search Google Scholar
    • Export Citation
  • Bouvier, C., A. Crespy, F. N. L’Aour-Dufour, F. Cres, F. Delclaux, and A. Marchandise, 2010: Modélisation Hydrologique Distribuée—Plate-Forme ATHYS. Vol. 9, Traité d’Hydraulique Environnementale, J.-M. Tanguy, Ed., Hermes Science Publications, 115–134.

  • Bouvier, C., N. Chahinian, M. Adamovic, C. Cassé, A. Crespy, A. Crès, and M. Alcoba, 2017: Large-scale GIS-based urban flood modelling: A case study on the city of Ouagadougou. Advances in Hydroinformatics, P. Gourbesville, J. Cunge, and G. Caignaert, Eds., Springer, 703–717.

    • Crossref
    • Export Citation
  • Bouvier, C., and et al. , 2018: Modélisation à fine résolution spatiale des inondations dans une agglomération urbaine, par couplage d’une modèle hydrologique et d’un modèle de transfert en réseau. Rev. Int. L’eau, hal-01926155, https://hal.archives-ouvertes.fr/hal-01926155.

  • Bradshaw, C. J. A., N. S. Sodhi, K. S. H. Peh, and B. W. Brook, 2007: Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biol., 13, 23792395, https://doi.org/10.1111/j.1365-2486.2007.01446.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brauer, C. C., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2016: The effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment. Hydrol. Processes, 30, 38853900, https://doi.org/10.1002/hyp.10898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecinati, F., A. de Niet, K. Sawicka, and M. Rico-Ramirez, 2017: Optimal temporal resolution of rainfall for urban applications and uncertainty propagation. Water, 9, 762, https://doi.org/10.3390/w9100762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chwala, C., and H. Kunstmann, 2019: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. Wiley Interdiscip. Rev. Water, 6, 20, https://doi.org/10.1002/wat2.1337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chwala, C., S. Hipp, and U. Siart, 2014: A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing. Atmos. Res., 144, 5772, https://doi.org/10.1016/j.atmosres.2013.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chwala, C., F. Keis, and H. Kunstmann, 2016: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications. Atmos. Meas. Tech., 9, 991999, https://doi.org/10.5194/amt-9-991-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CRED, 2015: Human Cost of Natural Disasters: A Global Perspective. EM-DAT, CRED, accessed 13 May 2020, https://www.emdat.be/human_cost_natdis.

  • D’Amico, M., A. Manzoni, and G. L. Solazzi, 2016: Use of operational microwave link measurements for the tomographic reconstruction of 2-D maps of accumulated rainfall. IEEE Geosci. Remote Sens. Lett., 13, 18271831, https://doi.org/10.1109/LGRS.2016.2614326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, N., P. Alpert, and H. Messer, 2013: The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions. Atmos. Res., 131, 1321, https://doi.org/10.1016/j.atmosres.2013.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depraetere, C., M. Gosset, S. Ploix, and H. Laurent, 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999–2006 on the Upper Ouémé Valley (Benin). J. Hydrol., 375, 143160, https://doi.org/10.1016/j.jhydrol.2009.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieulin, C., G. Mahé, J.-E. Paturel, S. Ejjiyar, Y. Tramblay, N. Rouché, and B. E. L. Mansouri, 2019: A new 60-year 1940/1999 monthly-gridded rainfall data set for Africa. Water, 11, 387, https://doi.org/10.3390/w11020387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doumounia, A., M. Gosset, F. Cazenave, M. Kacou, and F. Zougmore, 2014: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett., 41, 60166022, https://doi.org/10.1002/2014GL060724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vos, L. W., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2019: Rainfall estimation accuracy of a nationwide instantaneously sampling commercial microwave link network: Error dependency on known characteristics. J. Atmos. Oceanic Technol., 36, 12671283, https://doi.org/10.1175/JTECH-D-18-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebi, K. L., and K. Bowen, 2016: Extreme events as sources of health vulnerability: Drought as an example. Wea. Climate Extremes, 11, 95102, https://doi.org/10.1016/j.wace.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbinola, C. N., H. D. Olaniran, and A. C. Amanambu, 2017: Flood management in cities of developing countries: The example of Ibadan, Nigeria. J. Flood Risk Manag., 10, 546554, https://doi.org/10.1111/jfr3.12157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engel, T., A. H. Fink, P. Knippertz, G. Pante, and J. Bliefernicht, 2017: Extreme precipitation in the West African cities of Dakar and Ouagadougou: Atmospheric dynamics and implications for flood risk assessments. J. Hydrometeor., 18, 29372957, https://doi.org/10.1175/JHM-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fencl, M., and V. Bares, 2019: Rainfall retrieval from E-band commercial microwave links. Geophysical Research Abstracts, Vol. 21, Abstract 14956, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-14956.pdf.

  • Fencl, M., J. Rieckermann, M. Schleiss, D. Stránský, and V. Bareš, 2013: Assessing the potential of using telecommunication microwave links in urban drainage modelling. Water Sci. Technol., 68, 18101818, https://doi.org/10.2166/wst.2013.429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fencl, M., J. Rieckermann, P. Sýkora, D. Stránský, and V. Bareš, 2015: Commercial microwave links instead of rain gauges: Fiction or reality? Water Sci. Technol., 71, 3137, https://doi.org/10.2166/wst.2014.466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fencl, M., M. Dohnal, J. Rieckermann, and V. Bareš, 2017: Gauge-adjusted rainfall estimates from commercial microwave links. Hydrol. Earth Syst. Sci., 21, 617634, https://doi.org/10.5194/hess-21-617-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenicia, F., L. Pfister, D. Kavetski, P. Matgen, J.-F. Iffly, L. Hoffmann, and R. Uijlenhoet, 2012: Microwave links for rainfall estimation in an urban environment: Insights from an experimental setup in Luxembourg-City. J. Hydrol., 464–465, 6978, https://doi.org/10.1016/j.jhydrol.2012.06.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosset, M., and et al. , 2016: Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks. Bull. Amer. Meteor. Soc., 97, ES49ES51, https://doi.org/10.1175/BAMS-D-15-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosset, M., M. Alcoba, R. Roca, S. Cloché, and G. Urbani, 2018: Evaluation of TAPEER daily estimates and other GPM-era products against dense gauge networks in West Africa, analysing ground reference uncertainty. Quart. J. Roy. Meteor. Soc., 144, 255269, https://doi.org/10.1002/qj.3335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, M., C. Chwala, J. Polz, and H. Kunstmann, 2020: Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for 1 year of data. Hydrol. Earth Syst. Sci., 24, 29312950, https://doi.org/10.5194/hess-24-2931-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., R. Roca, M. Gosset, and V. Venugopal, 2018: Stochastic generation of precipitation fraction at high resolution with a multiscale constraint from satellite observations. Quart. J. Roy. Meteor. Soc., 144, 176190, https://doi.org/10.1002/qj.3314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoedjes, J., and et al. , 2014: A conceptual flash flood early warning system for Africa, based on terrestrial microwave links and flash flood guidance. ISPRS Int. J. Geoinfo., 3, 584598, https://doi.org/10.3390/ijgi3020584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, M. R., and A. R. Tharek, 2000: Measurement of wet antenna effect on microwave propagation at 23, 26 and 38 GHz. Vol. 4 of, IEEE Antennas and Propagation Soc. Int. Symp.: Transmitting Waves of Progress to the Next Millennium, Salt Lake City, UT, IEEE, https://doi.org/10.1109/APS.2000.874906.

    • Crossref
    • Export Citation
  • ITU, 2004: African Telecommunication Indicators. ITU, 140 pp.

  • Kacou, M., 2014: Analyse des précipitations en zone sahélienne à partir d’un radar bande X polarimétrique. Ph.D. thesis, Université Paul Sabatier et Université Félix Houphouët-Boigny, 225 pp.

  • Kharadly, M. M. Z., and R. Ross, 2001: Effect of wet antenna attenuation on propagation data statistics. IEEE Trans. Antennas Propag., 49, 11831191, https://doi.org/10.1109/8.943313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-S., and B. Kwon, 2018: Rainfall detection and rainfall rate estimation using microwave attenuation. Atmosphere, 9, 287, https://doi.org/10.3390/atmos9080287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koffi, A. K., M. Gosset, E.-P. Zahiri, A. D. Ochou, M. Kacou, F. Cazenave, and P. Assamoi, 2014: Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmos. Res., 143, 438461, https://doi.org/10.1016/j.atmosres.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovacs, Y., N. Doussin, and M. Gaussens, 2017: Flood risk and cities in developing countries. AFD Tech. Rep. 35, SEPIA Conseils, 105 pp., https://www.pseau.org/outils/ouvrages/afd_flood_risk_and_cities_in_developing_countries_en_2017.pdf.

  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007a: Hydrometeorological application of a microwave link: 2. Precipitation. Water Resour. Res., 43, 9, https://doi.org/10.1029/2006WR004989.

    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007b: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, https://doi.org/10.1029/2006WR005631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and I. Holleman, 2008a: Sources of error in microwave link rainfall estimation. Proc. Int. Symp. Weather Radar and Hydrology, Grenoble, France, KNMI, https://www.knmi.nl/kennis-en-datacentrum/publicatie/sources-of-error-in-microwave-link-rainfall-estimation.

  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2008b: Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation. Adv. Water Resour., 31, 14811493, https://doi.org/10.1016/j.advwatres.2008.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and A. Berne, 2010: Errors and uncertainties in microwave link rainfall estimation explored using drop size measurements and high-resolution radar data. J. Hydrometeor., 11, 13301344, https://doi.org/10.1175/2010JHM1243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134, https://doi.org/10.1175/2009JTECHA1318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, https://doi.org/10.1126/science.1120034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445, https://doi.org/10.1002/andp.19083300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moumouni, S., M. Gosset, and E. Houngninou, 2008: Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophys. Res. Lett., 35, L23807, https://doi.org/10.1029/2008GL035755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and et al. , 2018: The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ. Res. Lett., 13, 065003, https://doi.org/10.1088/1748-9326/aab1b1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noam, E. M., 1999: Telecommunications in Africa. Oxford University Press, 305 pp.

    • Crossref
    • Export Citation
  • Novella, N. S., and W. M. Thiaw, 2013: African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588606, https://doi.org/10.1175/JAMC-D-11-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrometzky, J., and A. Eshel, 2018: Empirical study of the quantization induced bias in commercial microwave links’ min/max attenuation measurements for rain monitoring. Environments, 5, 80, https://doi.org/10.3390/environments5070080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2011: Measuring urban rainfall using microwave links from commercial cellular communication networks. Water Resour. Res., 47, 116, https://doi.org/10.1029/2010WR010350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastorek, J., M. Fencl, J. Rieckermann, and V. Bareš, 2019: Commercial microwave links for urban drainage modelling: The effect of link characteristics and their position on runoff simulations. J. Environ. Manage., 251, 109 522, https://doi.org/10.1016/j.jenvman.2019.109522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polz, J., C. Chwala, M. Graf, and H. Kunstmann, 2020: Rain event detection in commercial microwave link attenuation data using convolutional neural networks. Atmos. Meas. Tech., 13, 38353853, https://doi.org/10.5194/amt-13-3835-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, T. H. Raupach, H. Leijnse, and R. Uijlenhoet, 2017: Rainfall retrieval with commercial microwave links in São Paulo, Brazil. Atmos. Meas. Tech., 11, 44654476, https://doi.org/10.5194/amt-11-4465-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roversi, G., P. P. Alberoni, A. Fornasiero, and F. Porcù, 2020: Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy. Atmos. Meas. Tech., 13, 57795797, https://doi.org/10.5194/amt-13-5779-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., and A. Berne, 2010: Identification of dry and rainy periods using telecommunication microwave links. IEEE Geosci. Remote Sens. Lett., 7, 611615, https://doi.org/10.1109/LGRS.2010.2043052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10, 11951199, https://doi.org/10.1109/LGRS.2012.2236074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smiatek, G., F. Keis, C. Chwala, B. Fersch, and H. Kunstmann, 2017: Potential of commercial microwave link network derived rainfall for river runoff simulations. Environ. Res. Lett., 12, 034026, https://doi.org/10.1088/1748-9326/aa5f46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stransky, D., M. Fencl, and V. Bares, 2018: Runoff prediction using rainfall data from microwave links: Tabor case study. Water Sci. Technol., 2017, 351359, https://doi.org/10.2166/wst.2018.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiessen, A. H., 1911: Climatological data for July, 1911—District No. 10, Great Basin. Mon. Wea. Rev., 39, 10821084.

  • Uijlenhoet, R., A. Overeem, and H. Leijnse, 2018: Opportunistic remote sensing of rainfall using microwave links from cellular communication networks. Wiley Interdiscip. Rev.: Water, 5, e1289, https://doi.org/10.1002/wat2.1289.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., P. Alpert, and H. Messer, 2008: Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv. Water Resour., 31, 14701480, https://doi.org/10.1016/j.advwatres.2008.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinevich, A., H. Messer, and P. Alpert, 2009: Frontal rainfall observation by a commercial microwave communication network. J. Appl. Meteor. Climatol., 48, 13171334, https://doi.org/10.1175/2008JAMC2014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinevich, A., H. Messer, and P. Alpert, 2010: Prediction of rainfall intensity measurement errors using commercial microwave communication links. Atmos. Meas. Tech., 3, 13851402, https://doi.org/10.5194/amt-3-1385-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 23
Full Text Views 21 21 6
PDF Downloads 33 33 10

Rainfall Measurement from Commercial Microwave Links for Urban Hydrology in Africa: A Simulation Framework for Sensitivity Analysis

View More View Less
  • 1 a Géosciences Environnement Toulouse, IRD/CNRS/Université Toulouse III/CNES, Toulouse, France
  • | 2 b Laboratoire de Physique de l’Atmosphère et de Mécanique des Fluides, Université Félix Houphouët-Boigny, Abidjan, Ivory Coast
  • | 3 c HydroSciences Montpellier, CNRS-IRD-UM, Montpellier, France
  • | 4 d CNRM, Météo-France/CNRS, Toulouse, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Urban floods due to intense precipitation are a major problem in many tropical regions as in Africa. Rainfall measurement using microwave links from cellular communication networks has been proposed as a cost-effective solution to monitor rainfall in these areas where the gauge network is scarce. The method consists in retrieving rainfall from the attenuation estimated along the commercial microwave links (CMLs) thanks to the power levels provided by an operator. In urban areas where the network is dense, rainfall can be estimated and mapped for hydrological prediction. Rainfall estimation from CMLs is subject to uncertainties. This paper analyzes the advantages and limitations of this rainfall data for a distributed hydrological model applied to an urban area. The case study is in West Africa in Ouagadougou, Burkina Faso, where a hydrological model has been set up. The analysis is based on numerical simulations, using high-resolution rain maps from a weather radar to emulate synthetic microwave links. Two sources of uncertainty in the rain estimation and on the simulated discharge are analyzed by simulations: (i) the precision of the raw information provided by the operator and (ii) the density and geometry of the network. A coarse precision (1 dB) in the signal provided by the operator can lead to substantial underestimation of rainfall and discharge, especially for links operating at low frequency (below 10 GHz) or of short length (less than 1 km). The density of the current mobile networks in urban areas is appropriate to analyze hydrological impact of tropical convective rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marielle Gosset, marielle.gosset@ird.fr

Abstract

Urban floods due to intense precipitation are a major problem in many tropical regions as in Africa. Rainfall measurement using microwave links from cellular communication networks has been proposed as a cost-effective solution to monitor rainfall in these areas where the gauge network is scarce. The method consists in retrieving rainfall from the attenuation estimated along the commercial microwave links (CMLs) thanks to the power levels provided by an operator. In urban areas where the network is dense, rainfall can be estimated and mapped for hydrological prediction. Rainfall estimation from CMLs is subject to uncertainties. This paper analyzes the advantages and limitations of this rainfall data for a distributed hydrological model applied to an urban area. The case study is in West Africa in Ouagadougou, Burkina Faso, where a hydrological model has been set up. The analysis is based on numerical simulations, using high-resolution rain maps from a weather radar to emulate synthetic microwave links. Two sources of uncertainty in the rain estimation and on the simulated discharge are analyzed by simulations: (i) the precision of the raw information provided by the operator and (ii) the density and geometry of the network. A coarse precision (1 dB) in the signal provided by the operator can lead to substantial underestimation of rainfall and discharge, especially for links operating at low frequency (below 10 GHz) or of short length (less than 1 km). The density of the current mobile networks in urban areas is appropriate to analyze hydrological impact of tropical convective rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marielle Gosset, marielle.gosset@ird.fr

Supplementary Materials

    • Supplemental Materials (ZIP 1011.59 KB)
Save