• Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmadalipour, A., A. Rana, H. Moradkhani, and A. Sharma, 2017: Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor. Appl. Climatol., 128, 7187, https://doi.org/10.1007/s00704-015-1695-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff, 2016: Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl., 26, 13381351, https://doi.org/10.1002/15-1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, B. N., and A. T. Degaetano, 2005: A method to infer time of observation at US Cooperative Observer Network stations using model analyses. Int. J. Climatol., 25, 12371251, https://doi.org/10.1002/joc.1183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., K. M. Whitney, G. Mascaro, and E. R. Vivoni, 2019: A deterministic approach for approximating the diurnal cycle of precipitation for use in large-scale hydrological modeling. J. Hydrometeor., 20, 297317, https://doi.org/10.1175/JHM-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, and CPC Precipitation Working Group, 2008: CPC Unified gauge-based analysis of global daily precipitation. 2008 Western Pacific Geophysics Meeting, Cairns, Queensland, Australia, Amer. Geophys. Union, 14 pp., https://ftp.cpc.ncep.noaa.gov/precip.orig/CPC_UNI_PRCP/GAUGE_GLB/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf.

  • Chen, J., F. P. Brissette, and P. Lucas-Picher, 2015: Assessing the limits of bias-correcting climate model outputs for climate change impact studies. J. Geophys. Res. Atmos., 120, 11231136, https://doi.org/10.1002/2014JD022635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, and W. P. Gibson, 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 20–23.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gergel, D. R., B. Nijssen, J. T. Abatzoglou, D. P. Lettenmaier, and M. R. Stumbaugh, 2017: Effects of climate change on snowpack and fire potential in the western USA. Climatic Change, 141, 287299, https://doi.org/10.1007/s10584-017-1899-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., L. B. Tremblay, J. R. Gyakum, and E. Atallah, 2014: Representing extremes in a daily gridded precipitation analysis over the United States: Impacts of station density, resolution, and gridding methods. J. Climate, 27, 52015218, https://doi.org/10.1175/JCLI-D-13-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and D. R. Legates, 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215227, https://doi.org/10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. Rasmussen, 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 71677186, https://doi.org/10.1002/2014WR015559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and et al. , 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, https://doi.org/10.1175/2011JHM1324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamman, J. J., and et al. , 2016: The land surface climate in the regional Arctic system model. J. Climate, 29, 65436562, https://doi.org/10.1175/JCLI-D-15-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamman, J. J., B. Nijssen, T. J. Bohn, D. R. Gergel, and Y. Mao, 2018: The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev., 11, 34813496, https://doi.org/10.5194/gmd-11-3481-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., J. Edmonds, R. E. Kopp, A. N. LeGrande, B. M. Sanderson, M. F. Wehner, and D. J. Wuebbles, 2017: Climate models, scenarios, and projections. Climate Science Special Report: Fourth National Climate Assessment, Vol. I, D. J. Wuebbles Eds., U.S. Global Change Research Program, 133–160, https://doi.org/10.7930/J0WH2N54.

    • Crossref
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., J. M. Winter, E. C. Osterberg, R. M. Horton, and B. Beckage, 2017: Total and extreme precipitation changes over the northeastern United States. J. Hydrometeor., 18, 17831798, https://doi.org/10.1175/JHM-D-16-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hungerford, R. D., R. R. Nemani, S. W. Running, and J. C. Coughlan, 1989: MTCLIM: A mountain microclimate simulation model. USDA Forest Service Intermountain Research Station Research Paper INT-414, 56 pp., https://www.fs.fed.us/rm/pubs_int/int_rp414.pdf.

    • Crossref
    • Export Citation
  • Janis, M. J., 2002: Observation-time-dependent biases and departures for daily minimum and maximum air temperature. J. Appl. Meteor., 41, 588603, https://doi.org/10.1175/1520-0450(2002)041<0588:OTDBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2017: Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeor., 18, 25412558, https://doi.org/10.1175/JHM-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., C. Beier, D. D. Briske, A. T. Classen, Y. Luo, M. Reichstein, and J. L. Heisler, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811821, https://doi.org/10.1641/B580908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier, 2017: How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett., 44, 61636172, https://doi.org/10.1002/2017GL073551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 415–14 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. Central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., M. Hughes, B. Henn, E. D. Gutmann, B. Livneh, J. Dozier, and P. Neiman, 2015: High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. J. Hydrometeor., 16, 17731792, https://doi.org/10.1175/JHM-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., M. Hughes, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lute, A. C., J. T. Abatzoglou, and K. C. Hegewisch, 2015: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res., 51, 960972, https://doi.org/10.1002/2014WR016267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and et al. , 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazdiyasni, O., and A. AghaKouchak, 2015: Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA, 112, 11 48411 489, https://doi.org/10.1073/pnas.1422945112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, D., 2007: Cooperative station observations. National Weather Service Manual Rep. 10-1315, 122 pp.

  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3950, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., S. Shukla, C. Lin, H. Gao, T. Zhou, J. Sheffield, E. F. Wood, and D. P. Lettenmaier, 2014: A prototype global drought information system based on multiple land surface models. J. Hydrometeor., 15, 16611676, https://doi.org/10.1175/JHM-D-13-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., J. F. Kalansky, and D. R. Cayan, 2018: Climate, drought, and sea level rise scenarios for California’s Fourth Climate Change Assessment. Rep. CCCA4-CEC-2018-006, California Energy Commission, 78 pp., https://www.energy.ca.gov/sites/default/files/2019-11/Projections_CCCA4-CEC-2018-006_ADA.pdf.

  • Prein, A. F., G. J. Holland, R. M. Rasmussen, M. P. Clark, and M. R. Tye, 2016: Running dry: The U.S. Southwest’s drift into a drier climate state. Geophys. Res. Lett., 43, 12721279, https://doi.org/10.1002/2015GL066727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risser, M. D., C. J. Paciorek, M. F. Wehner, T. A. O’Brien, and W. D. Collins, 2019: A probabilistic gridded product for daily precipitation extremes over the United States. Climate Dyn., 53, 25172538, https://doi.org/10.1007/s00382-019-04636-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Crossref
    • Export Citation
  • Shields, C. A., and et al. , 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., 2020: U.S. billion-dollar weather and climate disasters, 1980 - present (NCEI Accession 0209268). NOAA National Centers for Environmental Information, accessed 27 May 2020, https://doi.org/10.25921/stkw-7w73.

    • Crossref
    • Export Citation
  • Tan, A., J. C. Adam, and D. P. Lettenmaier, 2011: Change in spring snowmelt timing in Eurasian Arctic rivers. J. Geophys. Res., 116, D03101, https://doi.org/10.1029/2010JD014337.

    • Search Google Scholar
    • Export Citation
  • Vano, J., and et al. , 2020: Comparing downscaled LOCA and BCSD CMIP5 climate and hydrology projections. U. S. Bureau of Reclamation, 90 pp., http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/LOCA_BCSD_hydrology_tech_memo.pdf.

  • Vose, R. S., and et al. , 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, https://doi.org/10.1175/JAMC-D-13-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A hybrid dynamical-statistical downscaling technique. Part I: Development and validation of the technique. J. Climate, 28, 45974617, https://doi.org/10.1175/JCLI-D-14-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2012: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, https://doi.org/10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2018: Comprehensive evaluation of the Variable Infiltration Capacity (VIC) model in the North American land data assimilation system. J. Hydrometeor., 19, 18531879, https://doi.org/10.1175/JHM-D-18-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., R. L. Leung, D. Gochis, Y. Qian, and D. P. Lettenmaier, 2009: Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system. J. Adv. Model. Earth Syst., 1, 22, https://doi.org/10.3894/james.2009.1.13.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 354 354 82
Full Text Views 59 59 21
PDF Downloads 103 103 28

An Extreme-Preserving Long-Term Gridded Daily Precipitation Dataset for the Conterminous United States

View More View Less
  • 1 a Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, California
  • | 2 b Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 3 c Lawrence Berkeley National Laboratory, Berkeley, California
  • | 4 d CIRES, University of Colorado Boulder, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological datasets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded datasets over the conterminous United States. Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5–2.5 day increase in mean wet spell length, 30% low bias in 20-yr return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation dataset is developed that omits the time adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new dataset is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate change applications across the CONUS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David W. Pierce, dpierce@ucsd.edu

Abstract

Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is important to properly capture in gridded meteorological datasets. This work examines precipitation extremes, the mean precipitation on wet days, and fraction of wet days in two widely used gridded datasets over the conterminous United States. Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum precipitation, 25% increase in wet day fraction, 1.5–2.5 day increase in mean wet spell length, 30% low bias in 20-yr return values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily from the time adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding process playing a lesser role. A new daily precipitation dataset is developed that omits the time adjustment (as well as extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation metrics. When the new dataset is used to force a land surface model, annually averaged 1-day maximum runoff increases 38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and water balance components important for ecological and climate change applications across the CONUS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David W. Pierce, dpierce@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 925.68 KB)
Save