• Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, https://doi.org/10.1002/qj.803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and G. Panegrossi, 2020: What can we learn from the CloudSat radiometric mode observations of snowfall over the ice-free ocean? Remote Sens., 12, 3285, https://doi.org/10.3390/rs12203285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and Coauthors, 2020: Spaceborne cloud and precipitation radars: Status, challenges, and ways forward. Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, https://doi.org/10.1002/2013WR014566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 4041, https://doi.org/10.1029/2002RS002626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 26392654, https://doi.org/10.1175/JTECH-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhuiyan, M. A. E., F. Yang, N. K. Biswas, S. H. Rahat, and T. J. Neelam, 2020: Machine learning-based error modeling to improve GPM IMERG precipitation product over the Brahmaputra river basin. Forecasting, 2, 248266, https://doi.org/10.3390/forecast2030014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., and Coauthors, 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, https://doi.org/10.1109/TGRS.2011.2158438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., V. Krasnopolsky, J. Q. Stewart, E. S. Maddy, N. Shahroudi, and R. N. Hoffman, 2019: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges. Bull. Amer. Meteor. Soc., 100, ES473ES491, https://doi.org/10.1175/BAMS-D-18-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., C. Massari, T. Pellarin, P. Filippucci, L. Ciabatta, S. Camici, Y. H. Kerr, and D . Fernández-Prieto, 2020: River flow prediction in data scarce regions: Soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa. Sci. Rep., 10, 12517, https://doi.org/10.1038/s41598-020-69343-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and C. D. Kummerow, 2010: A physically based screen for precipitation over complex surfaces using passive microwave observations. IEEE Trans. Geosci. Remote Sens., 48, 299313, https://doi.org/10.1109/TGRS.2009.2027434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camplani, A., D. Casella, P . Sanò, and G. Panegrossi, 2021: The Passive Microwave Empirical Frozen Surface Classification Algorithm (PESCA): Application to GMI and ATMS. J. Hydrometeor., 22, 17271744, https://doi.org/10.1175/JHM-D-20-0260.1.

    • Search Google Scholar
    • Export Citation
  • Cao, C., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542, https://doi.org/10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T., D. Cline, C. Olheiser, A. Rost, A. Nilsson, G. Fall, C. Bovitz, and L. Li, 2006: NOAA’s national snow analyses. Proc. 74th Annual Meeting of the Western Snow Conf., Las Cruces, NM, Western Snow Conference, 14 pp., https://www.nohrsc.noaa.gov/technology/pdf/WSC_2006.pdf.

  • Casella, D., and Coauthors, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 2. Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Trans. Geosci. Remote Sens., 51, 46504671, https://doi.org/10.1109/TGRS.2013.2258161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich, 2015: A novel algorithm for detection of precipitation in tropical regions using PMW radiometers. Atmos. Meas. Tech., 8, 12171232, https://doi.org/10.5194/amt-8-1217-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., J. Muñoz-Sabater, C. Albergel, L. Isaksen, S. English, M. Drusch, and J.-P. Wigneron, 2020: SMOS brightness temperature forward modelling and long term monitoring at ECMWF. Remote Sens. Environ., 237, 111424, https://doi.org/10.1016/j.rse.2019.111424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert-Uphoff, I., and K. Hilburn, 2020: Evaluation, tuning and interpretation of neural networks for working with images in meteorological applications. Bull. Amer. Meteor. Soc., 101, E2149E2170, https://doi.org/10.1175/BAMS-D-20-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., and C. D. Kummerow, 2017: Microwave retrievals of terrestrial precipitation over snow covered surfaces: A lesson from the GPM satellite. Geophys. Res. Lett., 44, 61546162, https://doi.org/10.1002/2017GL073451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens., 53, 37203736, https://doi.org/10.1109/TGRS.2014.2382436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2016: Evaluation of ShARP passive rainfall retrievals over snow-covered land surfaces and coastal zones. J. Hydrometeor., 17, 10131029, https://doi.org/10.1175/JHM-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., C. D. Kummerow, and F. J. Turk, 2020: Metric learning for approximation of microwave channel error covariance: Application for satellite retrieval of drizzle and light snowfall. IEEE Trans. Geosci. Remote Sens., 58, 903912, https://doi.org/10.1109/TGRS.2019.2941682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edel, L., J. F. Rysman, C. Claud, C. Palerme, and C. Genthon, 2019: Potential of passive microwave around 183 GHz for snowfall detection in the Arctic. Remote Sens., 11, 2200, https://doi.org/10.3390/rs11192200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edokossi, K., A. Calabia, S. Jin, and I. Molina, 2020: GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sens., 12, 614, https://doi.org/10.3390/rs12040614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., F. Weng, N. C. Grody, and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672, https://doi.org/10.1029/2000GL011665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, B. Thakur, R. Jogineedi, A. Houston, S. Yuan, A. Kalra, and N. Lock, 2018: Evaluating soil moisture–precipitation interactions using remote sensing: A sensitivity analysis. J. Hydrometeor., 19, 12371253, https://doi.org/10.1175/JHM-D-17-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N.-Y. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, https://doi.org/10.1175/2010JTECHA1454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouweleeuw, B. T., A. I. J. M. van Dijk, J. P. Guerschman, P. Dyce, and M. Owe, 2012: Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction. Hydrol. Earth Syst. Sci., 16, 16351645, https://doi.org/10.5194/hess-16-1635-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and Coauthors, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., and E. Foufoula-Georgiou, 2020: Beyond the pixel: Using patterns and multiscale spatial information to improve the retrieval of precipitation from spaceborne passive microwave imagers. J. Atmos. Oceanic Technol., 37, 15711591, https://doi.org/10.1175/JTECH-D-19-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., E. Foufoula-Georgiou, C. D. Kummerow, and V. Petković, 2018: Resolving surface rain from GMI high-frequency channels: Limits imposed by the three-dimensional structure of precipitation. J. Atmos. Oceanic Technol., 35, 18351847, https://doi.org/10.1175/JTECH-D-18-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., R. C. Sawaya, S. Kacimi, O. O. Sy, F. J. Turk, and J. Steward, 2017: Interpreting millimeter-wave radiances over tropical convective clouds. J. Geophys. Res., 122, 16501664, https://doi.org/10.1002/2016JD025923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., Y. Tian, C. D. Peters-Lidard, S. Ringerud, and S. V. Kumar, 2015: Calibration to improve forward model simulation of microwave emissivity at GPM frequencies over the US Southern Great Plains. IEEE Trans. Geosci. Remote Sens., 54, 11031117, https://doi.org/10.1109/TGRS.2015.2474120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, L., and C. Liu, 2018: A multiyear analysis of global precipitation combining CloudSat and GPM precipitation retrievals. J. Hydrometeor., 19, 19351952, https://doi.org/10.1175/JHM-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, Y., P. de Rosnay, and G. Arduini, 2020: Evaluation of a microwave emissivity module for snow covered area with CMEM in the ECMWF integrated forecasting system. Remote Sens., 12, 2946, https://doi.org/10.3390/rs12182946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quart. J. Roy. Meteor. Soc., 144, 313328, https://doi.org/10.1002/qj.3175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilic, L., C. Prigent, J. Boutin, T. Meissner, S. English, and S. Yueh, 2019: Comparisons of ocean radiative transfer models with SMAP and AMSR2 observations. J. Geophys. Res. Oceans, 124, 76837699, https://doi.org/10.1029/2019JC015493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., J. Leinonen, J. Tyynelä, D. Ori, and A. Battaglia, 2020: Scattering of hydrometeors. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67. Springer, 249–276.

    • Crossref
    • Export Citation
  • Kubota, T., S. Seto, M. Satoh, T. Nasuno, T. Iguchi, T. Masaki, J. M. Kwiatkowski, and R. Oki, 2020: Cloud assumption of precipitation retrieval algorithms for the Dual-Frequency Precipitation Radar. J. Atmos. Oceanic Technol., 37, 20152031, https://doi.org/10.1175/JTECH-D-20-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, https://doi.org/10.1175/2010JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, M. S. Joseph, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Levizzani, V., and S. Laviola, and E . Cattani, 2011: Detection and measurement of snowfall from space. Remote Sens., 3, 145166, https://doi.org/10.3390/rs3010145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and Coauthors, 2018: The activities of the international precipitation working group. Quart. J. Roy. Meteor. Soc., 144, 315, https://doi.org/10.1002/qj.3214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., and E. K. Seo, 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res, 118, 13761387, https://doi.org/10.1002/jgrd.50172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and S.-A. Boukabara, 2014: Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ., 140, 744754, https://doi.org/10.1016/j.rse.2013.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mega, T., and S. Shige, 2016: Improvements of rain/no-rain classification methods for microwave radiometer over coasts by dynamic surface-type classification. J. Atmos. Oceanic Technol., 33, 12571270, https://doi.org/10.1175/JTECH-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, https://doi.org/10.1109/TGRS.2011.2179662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milani, L., and Coauthors, 2020: Extreme lake-effect snow from a GPM microwave imager perspective: Observational analysis and precipitation retrieval evaluation. J. Atmos. Oceanic Technol., 38, 293311, https://doi.org/10.1175/JTECH-D-20-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., T. L’Ecuyer, J. Haynes, S. Miller, and F. J. Turk, 2010: CloudSat precipitation profiling algorithm-model description. J. Appl. Meteor. Climatol., 49, 9911003, https://doi.org/10.1175/2009JAMC2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., M. Montopoli, A. Battaglia, G. Panegrossi, P. Kirtsetter, and L. Baldini, 2021: Cross validation of active and passive microwave snowfall products over the continental United States. J. Hydrometeor., 22, 12971315, https://doi.org/10.1175/JHM-D-20-0222.1.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, https://doi.org/10.1016/j.atmosres.2012.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., S. Ringerud, L. Brucker, Y. You, I. de Gelis, and C. Prigent, 2020: An active- passive microwave land surface database from GPM. IEEE Trans. Geosci. Remote Sens., 58, 62246242, https://doi.org/10.1109/TGRS.2020.2975477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2017: GPROF2017 version 1 and version 2 (used in GPM V5 processing). Algorithm Theoretical Basis Doc., 64 pp., http://rain.atmos.colostate.edu/ATBD/ATBD_GPM_October1_2017.pdf.

  • Norouzi, H., M. Temimi, C. Prigent, F. J. Turk, R. Khanbilvardi, Y. Tian, F. A. Furuzawa, and H. Masunaga, 2015: Assessment of the consistency among global microwave land surface emissivity products. Atmos. Meas. Tech., 8, 11971205, https://doi.org/10.5194/amt-8-1197-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., J. F. Rysman, D. Casella, A. C. Marra, P. Sanò, and M. S . Kulie, 2017: CloudSat-based assessment of GPM Microwave Imager snowfall observation capabilities. Remote Sens., 9, 1263, https://doi.org/10.3390/rs9121263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., C. D. Kummerow, D. L. Randel, J. R. Pierce, and J. K. Kodros, 2017: Improving the quality of heavy precipitation estimates from satellite passive microwave rainfall retrievals. J. Hydrometeor., 19, 6985, https://doi.org/10.1175/JHM-D-17-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., M. Orescanin, P.-E. Kirstetter, C. Kummerow, and R. R. Ferraro, 2019: Enhancing PMW satellite precipitation estimation: Detecting convective class. J. Atmos. Oceanic Technol., 36, 23492363, https://doi.org/10.1175/JTECH-D-19-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2013: Dimensionality reduction in Bayesian estimation algorithms. Atmos. Meas. Tech., 6, 22672276, https://doi.org/10.5194/amt-6-2267-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and R. Bennartz, 2017: Field-of-view characteristics and resolution matching for the Global Precipitation Measurement (GPM) Microwave Imager (GMI). Atmos. Meas. Tech., 10, 745758, https://doi.org/10.5194/amt-10-745-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. B. Rossow, 2003: Retrieval of surface and atmospheric geophysical variables over snow-covered land from combined microwave and infrared satellite observations. J. Appl. Meteor., 42, 368380, https://doi.org/10.1175/1520-0450(2003)042<0368:ROSAAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, https://doi.org/10.1175/BAMS-87-11-1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., E. Jaumouille, F. Chevallier, and F. Aires, 2008: A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates. IEEE Trans. Geosci. Remote Sens., 46, 344352, https://doi.org/10.1109/TGRS.2007.908881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., P. Liang, Y. Tian, F. Aires, J.-L. Moncet, and S. A. Boukabara, 2015: Evaluation of modeled microwave land surface emissivities with satellite-based estimates. J. Geophys. Res. Atmos., 120, 27062718, https://doi.org/10.1002/2014JD021817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringerud, S., C. D. Kummerow, and C. D. Peters-Lidard, 2014: A semi-empirical model for computing land surface emissivity in the microwave region. IEEE Trans. Geosci. Remote Sens., 53, 19351946, https://doi.org/10.1109/TGRS.2014.2351232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringerud, S., C. D. Kummerow, and C. D. Peters-Lidard, 2015: A prototype physical database for passive microwave retrievals of precipitation over the US Southern Great Plains. J. Geophys. Res., 120, 10 46510 482, https://doi.org/10.1002/2015JD023430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringerud, S., M. S. Kulie, D. L. Randel, G. M. Skofronick-Jackson, and C. D. Kummerow, 2019: Effects of ice particle representation on passive microwave precipitation retrieval in a Bayesian scheme. IEEE Trans. Geosci. Remote Sens., 57, 36193632, https://doi.org/10.1109/TGRS.2018.2886063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringerud, S., C. Peters-Lidard, J. Munchak, and Y. You, 2020: Applications of dynamic land surface information for passive microwave precipitation retrieval. J. Atmos. Oceanic Technol., 38, 167180, https://doi.org/10.1175/JTECH-D-20-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rysman, J. F., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, L. Milani, and M. S . Kulie, 2018: SLALOM: An all-surface snow water path retrieval algorithm for the GPM Microwave Imager. Remote Sens., 10, 1278, https://doi.org/10.3390/rs10081278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rysman, J. F., and Coauthors, 2019: Retrieving surface snowfall with the GPM Microwave Imager: A new module for the SLALOM algorithm. Geophys. Res. Lett., 46, 13 59313 601, https://doi.org/10.1029/2019GL084576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanò, P., G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai, M. Petracca, and S. Dietrich, 2015: The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: Description and application to European case studies. Atmos. Meas. Tech., 8, 837–857, https://doi.org/10.5194/amt-8-837-2015.

    • Crossref
    • Export Citation
  • Seto, S., N. Takahashi, and T. Iguchi, 2005: Rain/no-rain classification methods for microwave radiometer observations over land using statistical information for brightness temperatures under no-rain conditions. J. Appl. Meteor., 44, 12431259, https://doi.org/10.1175/JAM2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and B. T. Johnson, 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, https://doi.org/10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., B. T. Johnson, and J. Munchak, 2013: Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE Trans. Geosci. Remote Sens., 51, 41774189, https://doi.org/10.1109/TGRS.2012.2227763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. J. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M. Kulie, L. Milani, S. M. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements. Part 3: Identification of optimal meteorological tags. Nat. Hazards Earth Syst. Sci., 13, 11851208, https://doi.org/10.5194/nhess-13-1185-2013..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. Hsu, 2017: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takbiri, Z., A. Ebtehaj, E. Foufoula-Georgiou, P. E. Kirstetter, and J. Turk, 2019: A prognostic retrieval approach for microwave precipitation phase detection over snow cover. J. Hydrometeor., 20, 251274, https://doi.org/10.1175/JHM-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: IMERG V06: Changes to the morphing algorithm. J. Atmos. Oceanic Technol., 36, 24712482, https://doi.org/10.1175/JTECH-D-19-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., D. Long, A. Behrangi, C. Wang, and Y. Hong, 2018: Exploring deep neural networks to retrieve rain and snow in high latitudes using multisensor and reanalysis data. Water Resour. Res., 54, 82538278, https://doi.org/10.1029/2018WR023830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., C. Kidd, K. L. Hsu, and F. S. Marzano, 2004: Neural networks in satellite rainfall estimation. Meteor. Appl., 11, 8391, https://doi.org/10.1017/S1350482704001173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., R. Roca, A. Del Genio, B. Dewitt, W. A. Petersen, and F. Zhang, 2019: Is precipitation a good metric for model performance? Bull. Amer. Meteor. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1.

    • Crossref
    • Export Citation
  • Tassa, A., S. D. Michele, A. Mugnai, F. S. Marzano, and J. P. V. P. Baptista, 2003: Cloud model–based Bayesian technique for precipitation profile retrieval from the Tropical Rainfall Measuring Mission Microwave Imager. Radio Sci., 38, 8074, https://doi.org/10.1029/2002RS002674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, K. W. Harrison, Y. You, S. Ringerud, S. Kumar, and F. J. Turk, 2015: An examination of methods for estimating land surface microwave emissivity. J. Geophys. Res. Atmos., 120, 11 11411 128, https://doi.org/10.1002/2015JD023582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., L. Li, and Z. S. Haddad, 2014a: A physically based soil moisture and Microwave Emissivity Data Set for Global Precipitation Measurement (GPM) applications. IEEE Trans. Geosci. Remote Sens., 52, 76377650, https://doi.org/10.1109/TGRS.2014.2315809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Z. S. Haddad, and Y. You, 2014b: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, https://doi.org/10.1175/JHM-D-13-08.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., R. Sikhakolli, P. Kirstetter, and S. L. Durden, 2015: Exploiting over-land OceanSat-2 scatterometer observations to capture short-period time-integrated precipitation. J. Hydrometeor., 16, 25192535, https://doi.org/10.1175/JHM-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Z. S. Haddad, P. E. Kirstetter, Y. You, and S. Ringerud, 2017: An observationally based method for stratifying a priori passive microwave observations in a Bayesian-based precipitation retrieval framework. Quart. J. Roy. Meteor. Soc., 144, 145164, https://doi.org/10.1002/qj.3203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., F. J. Turk, Z. S. Haddad, P.-E. Kirstetter, and H. Kim, 2020: Evaluation of precipitation vertical profiles estimated by GPM-era satellite-based passive microwave retrievals. J. Hydrometeor., 22, 95112, https://doi.org/10.1175/JHM-D-20-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, W., and Coauthors, 2019: Using CYGNSS data to monitor China’s flood inundation during typhoon and extreme precipitation events in 2017. Remote Sens., 11, 854, https://doi.org/10.3390/rs11070854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Coauthors, 2017: Surface emissivity at microwaves to millimeter waves over polar regions: Parameterization and evaluation with aircraft experiments. J. Atmos. Oceanic Technol., 34, 1039–1059, https://doi.org/10.1175/JTECH-D-16-0188.1.

    • Crossref
    • Export Citation
  • Wang, N.-Y., C. Liu, R. Ferraro, D. Wolff, E. Zipser, and C. D. Kummerow, 2009: TRMM2A12 land precipitation product-status and future plans. J. Meteor. Soc. Japan, 87, 237253, https://doi.org/10.2151/jmsj.87A.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., and T. L’Ecuyer, 2013: Level 2C snow profile process description and interface control document. JPL Doc., 21 pp., accessed 24 November 2020, http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf.

  • Yamamoto, M. K., S. Shige, C. K. Yu, and L. W. Cheng, 2017: Further improvement of the heavy orographic rainfall retrievals in the GSMaP algorithm for microwave radiometers. J. Appl. Meteor. Climatol., 56, 26072619, https://doi.org/10.1175/JAMC-D-16-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, B., F. Weng, and H. Meng, 2008: Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit. J. Geophys. Res., 113, D19206, https://doi.org/10.1029/2007JD009559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., F. J. Turk, Z. S. Haddad, L. Li, and G. Liu, 2014: Principal components of multifrequency microwave land surface emissivities. Part II: Effects of previous-time precipitation. J. Hydrometeor., 15, 2037, https://doi.org/10.1175/JHM-D-13-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, 2017a: Improving overland precipitation retrieval with brightness temperature temporal variation. J. Hydrometeor., 18, 23552383, https://doi.org/10.1175/JHM-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017b: Quantifying the snowfall detection performance of the GPM microwave imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, N.-Y. Wang, J. Turk, S. Ringerud, S. Yang, and R. Ferraro, 2018: The instantaneous retrieval of precipitation over land by temporal variation at 19 GHz. J. Geophys. Res. Atmos., 123, 92799295, https://doi.org/10.1029/2017JD027596.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 397 397 43
Full Text Views 121 121 20
PDF Downloads 132 132 17

Adapting Passive Microwave-Based Precipitation Algorithms to Variable Microwave Land Surface Emissivity to Improve Precipitation Estimation from the GPM Constellation

View More View Less
  • 1 a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 b Earth Systems Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 3 c NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 d Cooperative Institute for Satellite Earth Systems Studies, University of Maryland, College Park, College Park, Maryland
  • | 5 e Sapienza University of Rome, Rome, Italy
  • | 6 f Institute of Atmospheric Science and Climate, National Research Council of Italy, Rome, Italy
  • | 7 g Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota
  • | 8 h Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
  • | 9 i Kyoto University of Advanced Science, Kyoto, Japan
  • | 10 j Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres, l’Observatoire de Paris, Paris, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A fully global satellite-based precipitation estimate that can transition across the changing Earth surface and complex land/water conditions is an important capability for many hydrological applications, and for independent evaluation of the precipitation derived from weather and climate models. This capability is inherently challenging owing to the complexity of the surface geophysical properties upon which the satellite-based instruments view. To date, these satellite observations originate primarily from a variety of wide-swath passive microwave (MW) imagers and sounders. In contrast to open ocean and large water bodies, the surface emissivity contribution to passive MW measurements is much more variable for land surfaces, with varying sensitivities to near-surface precipitation. The NASA–JAXA Global Precipitation Measurement (GPM) spacecraft (2014–present) is equipped with a dual-frequency precipitation radar and a multichannel passive MW imaging radiometer specifically designed for precipitation measurement, covering substantially more land area than its predecessor Tropical Rainfall Measuring Mission (TRMM). The synergy between GPM’s instruments has guided a number of new frameworks for passive MW precipitation retrieval algorithms, whereby the information carried by the single narrow-swath precipitation radar is exploited to recover precipitation from a disparate constellation of passive MW imagers and sounders. With over 6 years of increased land surface coverage provided by GPM, new insight has been gained into the nature of the microwave surface emissivity over land and ice/snow-covered surfaces, leading to improvements in a number of physically and semiphysically based precipitation retrieval techniques that adapt to variable Earth surface conditions. In this manuscript, the workings and capabilities of several of these approaches are highlighted.

Significance Statement

High-resolution satellite-based precipitation data products are currently produced by combining data products from many individual satellites as they orbit Earth. However, the signals recorded by the sensors on board these satellites are not directly related to the precipitation falling near Earth’s surface, but rather to a mixture of the precipitation and the underlying Earth surface conditions. The challenge for the algorithms is to be able to effectively separate and extract the desired portion of the signal representing the precipitation, from the undesired portion that is attributed to Earth’s surface. A review of a number of methods for carrying out this procedure are described and demonstrated, which capitalize on many years of satellite observations collected over many different Earth surface conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Corresponding author: F. Joseph Turk, jturk@jpl.caltech.edu

Abstract

A fully global satellite-based precipitation estimate that can transition across the changing Earth surface and complex land/water conditions is an important capability for many hydrological applications, and for independent evaluation of the precipitation derived from weather and climate models. This capability is inherently challenging owing to the complexity of the surface geophysical properties upon which the satellite-based instruments view. To date, these satellite observations originate primarily from a variety of wide-swath passive microwave (MW) imagers and sounders. In contrast to open ocean and large water bodies, the surface emissivity contribution to passive MW measurements is much more variable for land surfaces, with varying sensitivities to near-surface precipitation. The NASA–JAXA Global Precipitation Measurement (GPM) spacecraft (2014–present) is equipped with a dual-frequency precipitation radar and a multichannel passive MW imaging radiometer specifically designed for precipitation measurement, covering substantially more land area than its predecessor Tropical Rainfall Measuring Mission (TRMM). The synergy between GPM’s instruments has guided a number of new frameworks for passive MW precipitation retrieval algorithms, whereby the information carried by the single narrow-swath precipitation radar is exploited to recover precipitation from a disparate constellation of passive MW imagers and sounders. With over 6 years of increased land surface coverage provided by GPM, new insight has been gained into the nature of the microwave surface emissivity over land and ice/snow-covered surfaces, leading to improvements in a number of physically and semiphysically based precipitation retrieval techniques that adapt to variable Earth surface conditions. In this manuscript, the workings and capabilities of several of these approaches are highlighted.

Significance Statement

High-resolution satellite-based precipitation data products are currently produced by combining data products from many individual satellites as they orbit Earth. However, the signals recorded by the sensors on board these satellites are not directly related to the precipitation falling near Earth’s surface, but rather to a mixture of the precipitation and the underlying Earth surface conditions. The challenge for the algorithms is to be able to effectively separate and extract the desired portion of the signal representing the precipitation, from the undesired portion that is attributed to Earth’s surface. A review of a number of methods for carrying out this procedure are described and demonstrated, which capitalize on many years of satellite observations collected over many different Earth surface conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Corresponding author: F. Joseph Turk, jturk@jpl.caltech.edu
Save