• Climate Prediction Center, 2011: NOAA CPC Morphing Technique (CMORPH) global precipitation analyses. National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 27 June 2019, https://doi.org/10.5065/d6cz356w.

    • Crossref
    • Export Citation
  • Grecu, M., and W. S. Olson, 2020: Precipitation retrievals from satellite combined radar and radiometer observations. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 231–248, https://doi.org/10.1007/978-3-030-24568-9_14.

    • Crossref
    • Export Citation
  • Hoare, C. A. R., 1961: Algorithm 64: Quicksort. Commun. ACM, 4, 321.

  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2019a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 6, 34 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019b: Integrated Multi-satellitE Retreivals for GPM (IMERG) technical documentation. NASA Tech. Doc., 77 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_doc_190909.pdf.

  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019c: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center, accessed 27 June 2019, https://doi.org/10.5067/gpm/imerg/3b-hh/06.

    • Crossref
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 343–353, https://doi.org/10.1007/978-3-030-24568-9_19.

    • Crossref
    • Export Citation
  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2018: NASA Global Precipitation Measurement (GPM) Precipitation Retrieval and Profiling Scheme (PRPS). Algorithm Theoretical Basis Doc., Version 01-02, 17 pp., https://pps.gsfc.nasa.gov/Documents/20180203_SAPHIR-ATBD.pdf.

  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2019: GPM SAPHIR on MT1 (PRPS) radiometer precipitation profiling L2 1.5 hours 10 kmV06. Goddard Earth Sciences Data and Information Services Center, accessed 27 June 2019, https://doi.org/10.5067/gpm/saphir/mt1/prps/2a/06.

    • Crossref
    • Export Citation
  • Kirschbaum, D. B., and Coauthors, 2017: NASA’s remotely sensed precipitation: A reservoir for applications users. Bull. Amer. Meteor. Soc., 98, 11691184, https://doi.org/10.1175/BAMS-D-15-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based national mosaic QPE. J. Hydrometeor., 13, 12851300, https://doi.org/10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, Q. Cao, M. Schwaller, and W. Petersen, 2014: Research framework to bridge from the global precipitation measurement mission core satellite to the constellation sensors using ground-radar-based national mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 61–79.

    • Crossref
    • Export Citation
  • Kirstetter, P.-E., J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, https://doi.org/10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., 2017: GPM GMI (GPROF) radiometer precipitation profiling L2A 1.5 hours 13 km V05. Goddard Earth Sciences Data and Information Services Center, accessed 27 June 2019, https://doi.org/10.5067/gpm/gmi/gpm/gprof/2a/05.

    • Crossref
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maranan, M., A. H. Fink, P. Knippertz, L. K. Amekudzi, W. A. Atiah, and M. Stengel, 2020: A process-based validation of GPM IMERG and its sources using a mesoscale rain gauge network in the West African forest zone. J. Hydrometeor., 21, 729749, https://doi.org/10.1175/JHM-D-19-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., M. Ombadi, S. Sorooshian, K. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. R. Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci., 22, 58015816, https://doi.org/10.5194/hess-22-5801-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W., 2018: GPM DPR and GMI combined precipitation L2B 1.5 hours 5 km V06. Goddard Earth Sciences Data and Information Services Center, accessed 27 June 2019, https://doi.org/10.5067/gpm/dprgmi/cmb/2b/06.

    • Crossref
    • Export Citation
  • Rajagopal, M., E. Zipser, G. Huffman, J. Russell, and J. Tan, 2021: Comparisons of IMERG version 6 precipitation at and between passive microwave overpasses in the tropics. J. Hydrometeor., 22, 21172130, https://doi.org/10.1175/JHM-D-20-0226.1.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 141–152, https://doi.org/10.1007/978-3-030-24568-9_8.

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015: GPCC full data reanalysis version 7.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data: Gridded monthly totals. Global Precipitation Climatology Centre, accessed 27 June 2019, https://doi.org/10.5676/dwd_gpcc/fd_m_v7_100.

    • Crossref
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: IMERG V06: Changes to the morphing algorithm. J. Atmos. Oceanic Technol., 36, 24712482, https://doi.org/10.1175/JTECH-D-19-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 209 209 23
Full Text Views 72 72 8
PDF Downloads 99 99 11

SHARPEN: A Scheme to Restore the Distribution of Averaged Precipitation Fields

View More View Less
  • 1 a Universities Space Research Association, Columbia, Maryland
  • | 2 b NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 c Science Systems and Applications, Inc., Lanham, Maryland
  • | 4 d University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A key strategy in obtaining complete global coverage of high-resolution precipitation is to combine observations from multiple fields, such as the intermittent passive microwave observations, precipitation propagated in time using motion vectors, and geosynchronous infrared observations. These separate precipitation fields can be combined through weighted averaging, which produces estimates that are generally superior to the individual parent fields. However, the process of averaging changes the distribution of the precipitation values, leading to an increase in precipitating area and a decrease in the values of high precipitation rates, a phenomenon observed in IMERG. To mitigate this issue, we introduce a new scheme called SHARPEN (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood), which recovers the distribution of the averaged precipitation field based on the idea of quantile mapping applied to the local environment. When implemented in IMERG, precipitation estimates from SHARPEN exhibit a distribution that resembles that of the original instantaneous observations, with matching precipitating area and peak precipitation rates. Case studies demonstrate its improved ability in bridging between the parent precipitation fields. Evaluation against ground observations reveals a distinct improvement in precipitation detection skill, but also a slightly reduced correlation likely because of a sharper precipitation field. The increased computational demand of SHARPEN can be mitigated by striding over multiple grid boxes, which has only marginal impacts on the accuracy of the estimates. SHARPEN can be applied to any precipitation algorithm that produces an average from multiple input precipitation fields and is being considered for implementation in IMERG V07.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Jackson Tan, jackson.tan@nasa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0226.1.

Abstract

A key strategy in obtaining complete global coverage of high-resolution precipitation is to combine observations from multiple fields, such as the intermittent passive microwave observations, precipitation propagated in time using motion vectors, and geosynchronous infrared observations. These separate precipitation fields can be combined through weighted averaging, which produces estimates that are generally superior to the individual parent fields. However, the process of averaging changes the distribution of the precipitation values, leading to an increase in precipitating area and a decrease in the values of high precipitation rates, a phenomenon observed in IMERG. To mitigate this issue, we introduce a new scheme called SHARPEN (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood), which recovers the distribution of the averaged precipitation field based on the idea of quantile mapping applied to the local environment. When implemented in IMERG, precipitation estimates from SHARPEN exhibit a distribution that resembles that of the original instantaneous observations, with matching precipitating area and peak precipitation rates. Case studies demonstrate its improved ability in bridging between the parent precipitation fields. Evaluation against ground observations reveals a distinct improvement in precipitation detection skill, but also a slightly reduced correlation likely because of a sharper precipitation field. The increased computational demand of SHARPEN can be mitigated by striding over multiple grid boxes, which has only marginal impacts on the accuracy of the estimates. SHARPEN can be applied to any precipitation algorithm that produces an average from multiple input precipitation fields and is being considered for implementation in IMERG V07.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Jackson Tan, jackson.tan@nasa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0226.1.

Supplementary Materials

    • Supplemental Materials (PDF 160.31 KB)
Save