• Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 17201739, https://doi.org/10.1175/1520-0493(1995)123<1720:TROMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., S. Razavi, H. S. Wheater, and J. S. Wong, 2017: Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeor., 18, 10331050, https://doi.org/10.1175/JHM-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodenreider, C., L. Wright, O. Barr, K. Xu, and S. Wilson, 2019: Assessment of social, economic, and geographic vulnerability pre- and post-Hurricane Harvey in Houston, Texas. Environ. Justice, 12, 182193, https://doi.org/10.1089/env.2019.0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., M. Hughes, K. Mahoney, and R. Cifelli, 2020: On the uncertainty of high-resolution hourly quantitative precipitation estimates in California. J. Hydrometeor., 21, 865879, https://doi.org/10.1175/JHM-D-19-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG final product accurately represent MCSs’ precipitation characteristics over the central and eastern United States? J. Hydrometeor., 21, 3957, https://doi.org/10.1175/JHM-D-19-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaona, M. F. R., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2016: First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (V03D). J. Hydrometeor., 17, 27992814, https://doi.org/10.1175/JHM-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowan, T. A., and J. D. Horel, 2020: Evaluation of IMERG-E precipitation estimates for fire weather applications in Alaska. Wea. Forecasting, 35, 18311843, https://doi.org/10.1175/WAF-D-20-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20, 40334046, https://doi.org/10.1175/JCLI4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, L., and C. Liu, 2018: A multiyear analysis of global precipitation combining CloudSat and GPM precipitation retrievals. J. Hydrometeor., 19, 19351952, https://doi.org/10.1175/JHM-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 35 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf..

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2020b: Integrated Multi-Satellite Retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 83 pp., https://gpm.nasa.gov/resources/documents/IMERG-V06-Technical-Documentation.

  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2018: NASA Global Precipitation Measurement (GPM) Precipitation Retrieval and Profiling Scheme (PRPS). Algorithm Theoretical Basis Doc., version 01-02, 16 pp., https://pps.gsfc.nasa.gov/Documents/20180203_SAPHIR-ATBD.pdf.

  • Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quart. J. Roy. Meteor. Soc., 144, 313328, https://doi.org/10.1002/qj.3175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: The Physics and Chemistry of Clouds. Cambridge University Press, 70 pp.

  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, https://doi.org/10.1175/2010JHM1320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maranan, M., A. H. Fink, P. Knippertz, L. K. Amekudzi, W. A. Atiah, and M. Stengel, 2020: A process-based validation of GPM IMERG and its sources using a mesoscale rain gauge network in the West African Forest Zone. J. Hydrometeor., 21, 729749, https://doi.org/10.1175/JHM-D-19-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., R. A. Maddox, and K. W. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643665, https://doi.org/10.1175/1520-0434(1995)010<0643:CSOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, https://doi.org/10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., M. Ombadi, S. Sorooshian, K. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. R. Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci., 22, 58015816, https://doi.org/10.5194/hess-22-5801-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., H. Masunaga, and the GPM Combined Radar-Radiometer Algorithm Team, 2011: GPM combined radar-radiometer precipitation. Algorithm theoretical basis document (version 2). PPS, NASA/GSFC, 58 pp., http://pps.gsfc.nasa.gov/Documents/GPM2011CombinedL2ATBD.pdf.

  • Paul, S., D. Ghebreyesus, and H. O. Sharif, 2019: Brief communication: Analysis of the fatalities and socio-economic impacts caused by Hurricane Florence. Geosciences, 9, 58, https://doi.org/10.3390/geosciences9020058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol 67, Springer, 141–152, https://link.springer.com/chapter/10.1007/978-3-030-24568-9_8.

  • Schneider, U., and Coauthors, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, E., R. Steinacker, and B. Saghafian, 2016: Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens., 8, 135, https://doi.org/10.3390/rs8020135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohoulande, C. D., K. Stone, A. Szogi, and P. Bauer, 2019: An investigation of seasonal precipitation patterns for rainfed agriculture in the southeastern region of the United States. Agric. Water Manage., 223, 105728, https://doi.org/10.1016/j.agwat.2019.105728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinker, S., K. Hoberg, and U. W. Thonemann, 2017: The value of weather information for e-commerce operations. Prod. Oper. Manag., 26, 18541874, https://doi.org/10.1111/poms.12721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sungmin, O., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, P. Kirstetter, and Y. Tian, 2017: Performance of IMERG as a function of spatiotemporal scale. J. Hydrometeor., 18, 307319, https://doi.org/10.1175/JHM-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018: Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: IMERG V06: Changes to the morphing algorithm. J. Hydrometeor., 36, 24712482, https://doi.org/10.1175/JTECH-D-19-0114.1.

    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, E. J. Nelkin, and M. Rajagopal, 2021: SHARPEN: A scheme to restore the distribution of averaged precipitation fields. J. Hydrometeor., 22, 21052116, https://doi.org/10.1175/JHM-D-20-0225.1.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., A. Navarro, E. García-Ortega, A. Merino, J. L. Sánchez, C. Marcos, and C. Kummerow, 2020: The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain. J. Hydrometeor., 21, 161182, https://doi.org/10.1175/JHM-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verstraete, G., E. H. Aghezzaf, and B. Desmet, 2019: A data-driven framework for predicting weather impact on high-volume low-margin retail products. J. Retailing Consum. Serv., 48, 169177, https://doi.org/10.1016/j.jretconser.2019.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watters, D., A. Battaglia, K. Mroz, and F. Tridon, 2018: Validation of the GPM version-5 surface rainfall products over Great Britain and Ireland. J. Hydrometeor., 19, 16171636, https://doi.org/10.1175/JHM-D-18-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 169 pp.

  • Xie, P., R. Joyce, S. Wu, S. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., V. Petkovic, J. Tan, R. Kroodsma, W. Berg, C. Kidd, and C. Peters-Lidard, 2020: Evaluation of V05 precipitation estimates from GPM constellation radiometers using KuPR as the reference. J. Hydrometeor., 21, 705728, https://doi.org/10.1175/JHM-D-19-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., P. Sun, V. P. Singh, and X. Chen, 2012: Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Global Planet. Change, 82–83, 8695, https://doi.org/10.1016/j.gloplacha.2011.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., W. K. M. Lau, and G. J. Huffman, 2015: Mapping TRMM TMPA into average recurrence interval for monitoring extreme precipitation events. J. Appl. Meteor. Climatol., 54, 979995, https://doi.org/10.1175/JAMC-D-14-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 18
Full Text Views 78 78 16
PDF Downloads 115 115 24

Comparisons of IMERG Version 06 Precipitation at and between Passive Microwave Overpasses in the Tropics

View More View Less
  • 1 a University of Utah, Salt Lake City, Utah
  • | 2 b NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 c Universities Space Research Association, Columbia, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Integrated Multisatellite Retrievals for Global Precipitation Measurement Mission (IMERG) is a global precipitation product that uses precipitation retrievals from the virtual constellation of satellites with passive microwave (PMW) sensors, as available. In the absence of PMW observations, IMERG uses a Kalman filter scheme to morph precipitation from one PMW observation to the next. In this study, an analysis of convective systems observed during the Convective Process Experiment (CPEX) suggests that IMERG precipitation depends more strongly on the availability of PMW observations than previously suspected. Following this evidence, we explore systematic biases in IMERG through bulk statistics. In two CPEX case studies, cloud photographs, pilot’s radar, and infrared imagery suggest that IMERG represents the spatial extent of precipitation relatively well when there is a PMW observation but sometimes produces spurious precipitation areas in the absence of PMW observations. Also, considering an observed convective system as a precipitation object in IMERG, the maximum rain rate peaked during PMW overpasses, with lower values between them. Bulk statistics reveal that these biases occur throughout IMERG Version 06. We find that locations and times without PMW observations have a higher frequency of light precipitation rates and a lower frequency of heavy precipitation rates due to retrieval artifacts. These results reveal deficiencies in the IMERG Kalman filter scheme, which have led to the development of the Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood (SHARPEN; described in a companion paper) that will be applied in the next version of IMERG.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Manikandan Rajagopal, mani.rajagopal@utah.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0225.1.

Abstract

The Integrated Multisatellite Retrievals for Global Precipitation Measurement Mission (IMERG) is a global precipitation product that uses precipitation retrievals from the virtual constellation of satellites with passive microwave (PMW) sensors, as available. In the absence of PMW observations, IMERG uses a Kalman filter scheme to morph precipitation from one PMW observation to the next. In this study, an analysis of convective systems observed during the Convective Process Experiment (CPEX) suggests that IMERG precipitation depends more strongly on the availability of PMW observations than previously suspected. Following this evidence, we explore systematic biases in IMERG through bulk statistics. In two CPEX case studies, cloud photographs, pilot’s radar, and infrared imagery suggest that IMERG represents the spatial extent of precipitation relatively well when there is a PMW observation but sometimes produces spurious precipitation areas in the absence of PMW observations. Also, considering an observed convective system as a precipitation object in IMERG, the maximum rain rate peaked during PMW overpasses, with lower values between them. Bulk statistics reveal that these biases occur throughout IMERG Version 06. We find that locations and times without PMW observations have a higher frequency of light precipitation rates and a lower frequency of heavy precipitation rates due to retrieval artifacts. These results reveal deficiencies in the IMERG Kalman filter scheme, which have led to the development of the Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood (SHARPEN; described in a companion paper) that will be applied in the next version of IMERG.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Manikandan Rajagopal, mani.rajagopal@utah.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0225.1.

Supplementary Materials

    • Supplemental Materials (ZIP 18.27 MB)
Save