• AghaKouchak, A., and A. Mehran, 2013: Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res., 49, 71447149, https://doi.org/10.1002/wrcr.20498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, H., V. S. O. Kirca, H. I. Burgan, and D. Kellecioglu, 2016: Hydrological and hydraulic models for determination of flood-prone and flood inundation areas. Proc. Int. Assoc. Hydrol. Sci., 373, 137141, https://doi.org/10.5194/piahs-373-137-2016.

    • Search Google Scholar
    • Export Citation
  • Andres, N., G. Lieberherr, I. V. Sideris, F. Jordan, and M. Zappa, 2016: From calibration to real-time operations: An assessment of three precipitation benchmarks for a Swiss river system. Meteor. Appl., 23, 448461, https://doi.org/10.1002/met.1569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduino, G., P. Reggiani, and E. Todini, 2005: Recent advances in flood forecasting and flood risk assessment. Hydrol. Earth Syst. Sci., 9, 280284, https://doi.org/10.5194/hess-9-280-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awol, F. S., 2020: Identification of hydrologic models, inputs, and calibration approaches for enhanced flood forecasting. Ph.D. thesis, McMaster University, 255 pp., http://hdl.handle.net/11375/25130.

  • Awol, F. S., P. Coulibaly, and B. A. Tolson, 2018: Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds. Adv. Water Resour., 118, 1227, https://doi.org/10.1016/j.advwatres.2018.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awol, F. S., P. Coulibaly, I. Tsanis, and F. Unduche, 2019: Identification of hydrological models for enhanced ensemble reservoir inflow forecasting in a large complex prairie watershed. Water, 11, 2201, https://doi.org/10.3390/w11112201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barge, B. L., R. G. Humphries, S. J. Mah, and W. K. Kuhnke, 1979: Rainfall measurements by weather radar: applications to hydrology. Water Resour. Res., 15, 13801386, https://doi.org/10.1029/WR015i006p01380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barredo, J. I., 2009: Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci., 9, 97104, https://doi.org/10.5194/nhess-9-97-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., and G. L. Austin, 1978: The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (SHARP). J. Appl. Meteor., 17, 17781787, https://doi.org/10.1175/1520-0450(1978)017<1778:TEOTYO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., and G. L. Austin, 1984: The accuracy of short-term radar rainfall forecasts. J. Hydrol., 70, 3549, https://doi.org/10.1016/0022-1694(84)90112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., and I. Zawadzki, 1994: Forecasting of hourly accumulations of precipitation by optimal extrapolation of radar maps. J. Hydrol., 157, 211233, https://doi.org/10.1016/0022-1694(94)90106-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., S. Lovejoy, and G. L. Austin, 1980: Combining satellite and radar data for the short-range forecasting of precipitation. Mon. Wea. Rev., 108, 15541566, https://doi.org/10.1175/1520-0493(1980)108<1554:CSARDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beneti, C., R. V. Calheiros, M. Sorribas, L. Calvetti, C. Oliveira, N. Rozin, and J. Ruviaro, 2019: Operational hydrological modelling of small watershed using QPE from dual-pol radar in Brazil. Preprints, 2019060026, 8 pp., https://doi.org/10.20944/preprints201906.0026.v1.

    • Crossref
    • Export Citation
  • Boodoo, S., D. Hudak, A. Ryzhkov, P. Zhang, N. Donaldson, D. Sills, and J. Reid, 2015: Quantitative precipitation estimation from a C-band dual-polarized radar for the 8 July 2013 flood in Toronto, Canada. J. Hydrometeor., 16, 20272044, https://doi.org/10.1175/JHM-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borga, M., 2002: Accuracy of radar rainfall estimates for streamflow simulation. J. Hydrol., 267, 2639, https://doi.org/10.1016/S0022-1694(02)00137-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borga, M., S. D. Esposti, and D. Norbiato, 2006: Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resour. Res., 42, W08409, https://doi.org/10.1029/2005WR004559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowering, E. A., A. M. Peck, and S. P. Simonovic, 2014: A flood risk assessment to municipal infrastructure due to changing climate part I: Methodology. Urban Water J., 11, 2030, https://doi.org/10.1080/1573062X.2012.758293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, https://doi.org/10.1175/JHM-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., T. A. Niziol, N. R. Donaldson, P. I. Joe, and V. T. Wood, 2007: Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part III: Simulations of shallow convective activity over and around Lake Ontario. Weather Forecast., 22, 839852, https://doi.org/10.1175/WAF1019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, G. W., S. S. Piper, M. R. Jensen, and B. Chacon, 2015: Combined 1D and 2D hydraulic modeling within HEC-RAS. World Environmental and Water Resources Congress 2015, Austin, TX, ASCE, 1432–1443, https://doi.org/10.1061/9780784479162.141.

    • Crossref
    • Export Citation
  • Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, https://doi.org/10.1016/j.atmosres.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charley, W., B. Moran, and J. Larosa, 2012: Model integration for real-time flood forecasting inundation mapping for Nashville tributaries. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H43A-1310.

  • Che, D., and L. W. Mays, 2015: Development of an optimization/simulation model for real-time flood-control operation of river-reservoirs systems. Water Resour. Manage., 29, 39874005, https://doi.org/10.1007/s11269-015-1041-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Farrar, 2007: Evaluation of NARAD precipitation data for rainfall monitoring in eastern Ontario, Canada. Geomatics Solutions for Disaster Management. Lecture Notes in Geoinformation and Cartography, J. Li, S. Zlatanova, and A.G. Fabbri, Eds., Springer, 103–116, https://doi.org/10.1007/978-3-540-72108-6_8.

    • Crossref
    • Export Citation
  • Chu, X., and A. Steinman, 2009: Event and continuous hydrologic modeling with HEC-HMS. J. Irrig. Drain. Eng., 135, 119124, https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(119).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulibaly, P., B. Bobée, and F. Anctil, 2001: Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrol. Processes, 15, 15331536, https://doi.org/10.1002/hyp.445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cranston, M. D., and A. C. Tavendale, 2012: Advances in operational flood forecasting in Scotland. Proc. Inst. Civ. Eng.: Water Manage., 165, 7987, https://doi.org/10.1680/wama.2012.165.2.79.

    • Search Google Scholar
    • Export Citation
  • Cunderlik, J., and S. P. Simonovic, 2004: Calibration, verification and sensitivity analysis of the HEC-HMS hydrologic model. University of Western Ontario Dept. of Civil and Environmental Engineering Water Resources Research Rep. 048, 113 pp.

  • Dai, Q., Q. Yang, J. Zhang, and S. Zhang, 2018: Impact of gauge representative error on a radar rainfall uncertainty model. J. Appl. Meteor. Climatol., 57, 27692787, https://doi.org/10.1175/JAMC-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darbandsari, P., and P. Coulibaly, 2020: Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud., 31, 100730, https://doi.org/10.1016/j.ejrh.2020.100730.

    • Search Google Scholar
    • Export Citation
  • de Roo, A. P., and Coauthors, 2003: Development of a European flood forecasting system. Int. J. River Basin Manage., 1, 4959, https://doi.org/10.1080/15715124.2003.9635192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devia, G. K., B. P. Ganasri, and G. S. Dwarakish, 2015: A review on hydrological models. Aquat. Procedia, 4, 10011007, https://doi.org/10.1016/j.aqpro.2015.02.126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhiram, K., and Z. Wang, 2016: Evaluation on radar reflectivity-rainfall rate (Z-R) relationships for Guyana. Sciences, 6, 489499, https://doi.org/10.4236/acs.2016.64039.

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., 1990: The stormy weather group (Canada). Radar in Meteorology, Springer, 61–68, https://doi.org/10.1007/978-1-935704-15-7_8.

    • Crossref
    • Export Citation
  • Doviak, R. J., 1993: Doppler Radar and Weather Observations. Courier Corporation, 562 pp.

  • Drusch, M., E. F. Wood, and H. Gao, 2005: Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett., 32, L15403, https://doi.org/10.1029/2005GL023623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., and G. R. Essenberg, 2001: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res., 37, 32533263, https://doi.org/10.1029/2001WR000541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, U., and E. Zehe, 2011: Series distance–an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events. Hydrol. Earth Syst. Sci., 15, 877896, https://doi.org/10.5194/hess-15-877-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Everitt, B. S., 1992: The Analysis of Contingency Tables. CRC Press, 168 pp.

    • Crossref
    • Export Citation
  • Ezz, H., 2018: Integrating GIS and HEC-RAS to model Assiut plateau runoff. Egypt. J. Remote Sens. Space Sci., 21, 219227, https://doi.org/10.1016/j.ejrs.2017.11.002.

    • Search Google Scholar
    • Export Citation
  • Falck, A. S., and Coauthors, 2018: Improving the use of ground-based radar rainfall data for monitoring and predicting floods in the Iguaçu river basin. J. Hydrol., 567, 626636, https://doi.org/10.1016/j.jhydrol.2018.10.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, X., D. B. Thompson, T. G. Cleveland, P. Pradhan, and R. Malla, 2008: Time of concentration estimated using watershed parameters determined by automated and manual methods. J. Irrig. Drain. Eng., 134, 202211, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(202).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornasiero, A., P. P. Alberoni, R. Amorati, L. Ferraris, and A. C. Taramasso, 2005: Effects of propagation conditions on Radar beam-ground interaction: impact on data quality. Adv. Geosci., 2, 2012018, https://doi.org/10.5194/adgeo-2-201-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Weather Forecast., 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 7489, https://doi.org/10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa, 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445456, https://doi.org/10.1002/qj.375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and L. Delobbe, 2009: Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci., 13, 195203, https://doi.org/10.5194/hess-13-195-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzman, J. A., D. N. Moriasi, M. L. Chu, P. J. Starks, J. L. Steiner, and P. H. Gowda, 2013: A tool for mapping and spatio-temporal analysis of hydrological data. Environ. Modell. Software, 48, 163170, https://doi.org/10.1016/j.envsoft.2013.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W., M. A. Rico-Ramirez, and S. Krämer, 2015: Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrol., 531, 248258, https://doi.org/10.1016/j.jhydrol.2015.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., and P. Coulibaly, 2017: Bayesian flood forecasting methods: A review. J. Hydrol., 551, 340351, https://doi.org/10.1016/j.jhydrol.2017.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., and P. Coulibaly, 2019: Probabilistic flood forecasting using hydrologic uncertainty processor with ensemble weather forecasts. J. Hydrometeor., 20, 13791398, https://doi.org/10.1175/JHM-D-18-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashemyan, F., M. R. Khaleghi, and M. Kamyar, 2015: Combination of HEC-HMS and HEC-RAS models in GIS in order to Simulate Flood (Case study: Khoshke Rudan river in Fars province, Iran). Res. J. Recent Sci., 4, 122127.

    • Search Google Scholar
    • Export Citation
  • Hassan, D., P. A. Taylor, and G. A. Isaac, 2019: Solid snowfall rate estimation using a C-band radar. Meteor. Appl., 26, 6473, https://doi.org/10.1002/met.1737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Her, Y., S.-H. Yoo, J. Cho, S. Hwang, J. Jeong, and C. Seong, 2019: Uncertainty in hydrological analysis of climate change: Multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep., 9, 4974, https://doi.org/10.1038/s41598-019-41334-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, F. E., and T. Peacock, 2005: Suitability of HEC-RAS for flood forecasting. Can. Water Resour. J., 30, 159174, https://doi.org/10.4296/cwrj3002159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, https://doi.org/10.1175/2009JTECHA1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, D., B. Currie, P. Rodriguez, S. G. Cober, I. Zawadzki, G. A. Isaac, and M. Wolde, 2002: Cloud phase detection in winter stratiform clouds using Polarimetric Doppler Radar. Proc. ERAD 2002, Delft, Netherlands, Delft University of Technology, 90–94, https://www.copernicus.org/erad/online/erad-90.pdf.

  • Hudak, D., P. Rodriguez, and N. Donaldson, 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res., 113, D00A07, https://doi.org/10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Jonkman, S. N., and I. Kelman, 2005: An analysis of the causes and circumstances of flood disaster deaths. Disasters, 29, 7597, https://doi.org/10.1111/j.0361-3666.2005.00275.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonkman, S. N., and J. K. Vrijling, 2008: Loss of life due to floods. J. Flood Risk Manage., 1, 4356, https://doi.org/10.1111/j.1753-318X.2008.00006.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, P., A. Seed, and G. Austin, 2000: Sampling errors in radar estimates of rainfall. J. Geophys. Res., 105, 22472257, https://doi.org/10.1029/1999JD900130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. I., Z. Flamig, and Y. Hong, 2019: Flood monitoring system using distributed hydrologic modeling for Indus River Basin. Indus River Basin: Water Security and Sustainability, S. I. Khan and T. E. Adams III, Eds., Elsevier, 335–355, https://doi.org/10.1016/B978-0-12-812782-7.00015-1.

    • Crossref
    • Export Citation
  • Kornelsen, K. C., and P. Coulibaly, 2015: Reducing multiplicative bias of satellite soil moisture retrievals. Remote Sens. Environ., 165, 109122, https://doi.org/10.1016/j.rse.2015.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, L. W., and E. L. Peck, 1974: Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res., 10, 857863, https://doi.org/10.1029/WR010i004p00857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leach, J. M., K. C. Kornelsen, and P. Coulibaly, 2018: Assimilation of near-real time data products into models of an urban basin. J. Hydrol., 563, 5164, https://doi.org/10.1016/j.jhydrol.2018.05.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matott, L. S., 2017: OSTRICH: An optimization software tool, documentation and user’s guide, version 17.12.19. University at Buffalo Center for Computational Research Rep., 79 pp., www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.

  • Mays, L. W., 2010: Water Resources Engineering. John Wiley and Sons, 928 pp.

  • McKee, J. L., and A. D. Binns, 2016: A review of gauge–radar merging methods for quantitative precipitation estimation in hydrology. Can. Water Resour. J., 41, 186203, https://doi.org/10.1080/07011784.2015.1064786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, J. L., A. D. Binns, M. Helsten, and M. Shifflett, 2018: Evaluation of gauge-radar merging methods using a semi-distributed hydrological model in the upper Thames River Basin, Canada. J. Amer. Water Resour. Assoc., 54, 594612, https://doi.org/10.1111/1752-1688.12625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods, 2011: Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol., 400, 8394, https://doi.org/10.1016/j.jhydrol.2011.01.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meischner, P., 2005: Weather Radar: Principles and Advanced Applications. Springer, 337 pp.

    • Crossref
    • Export Citation
  • Moreno, H. A., E. R. Vivoni, and D. J. Gochis, 2012: Utility of quantitative precipitation estimates for high resolution hydrologic forecasts in mountain watersheds of the Colorado Front Range. J. Hydrol., 438–439, 6683, https://doi.org/10.1016/j.jhydrol.2012.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, A., 2003: Hydrologic modeling of rainfall-runoff process and its application to real-time flood forecasting. Tsukuba Asian Seminar on Agricultural Education, Tsukuba, Japan, University of Tsukuba, 111–118, http://www.nourin.tsukuba.ac.jp/~tasae/2002/Nagai_2002.pdf.

  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Natural Resources Canada, 2016: Mimico Creek. Government of Canada, accessed 9 October 2020, http://www4.rncan.gc.ca/search-place-names/unique.php?id=FDUYH&output=xml.

  • NOAA, 2018: NEXRAD Data Archive, Inventory and Access. Accessed 1 June 2019, https://www.ncdc.noaa.gov/nexradinv/.

  • Ochoa-Rodriguez, S., L.-P. Wang, P. Willems, and C. Onof, 2019: A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res., 55, 63566391, https://doi.org/10.1029/2018WR023332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ontario GeoHub, 2020: Southern Ontario Land Resource Information System (SOLRIS) 3.0. Accessed 9 October 2020, https://geohub.lio.gov.on.ca/datasets/0279f65b82314121b5b5ec93d76bc6ba.

  • Pagano, T. C., and Coauthors, 2014: Challenges of operational river forecasting. J. Hydrometeor., 15, 16921707, https://doi.org/10.1175/JHM-D-13-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, P. J., 2002: Guidelines for reducing flood losses. United Nations International Strategy for Disaster Reduction Doc., 79 pp., https://sustainabledevelopment.un.org/content/documents/flood_guidelines.pdf.

  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Public Safety Canada, 2019: The Canadian Disaster Database. Accessed 13 May 2020, https://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-en.aspx.

  • Ramos, M.-H., 2016: Flood forecasting systems around the world – Interview with Thomas Adams and Tom Pagano. HEPEX, accessed 22 March 2021, https://hepex.inrae.fr/flood-forecasting-systems-around-the-world-interview-with-thomas-adams-and-tom-pagano/.

  • Ran, Q., W. Fu, Y. Liu, T. Li, K. Shi, and B. Sivakumar, 2018: Evaluation of quantitative precipitation predictions by ECMWF, CMA, and UKMO for flood forecasting: Application to two basins in China. Nat. Hazards Rev., 19, 05018003, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, M., R. James, W. James, K. Finney, and M. Heralall, 2014: PCSWMM Real Time Flood Forecasting–Toronto, Canada. Proc. of the 11th Int. Conf. on Hydroinformatics, New York, NY, City College of New York, 2291–2293.

  • Razavi, T., and P. Coulibaly, 2017: An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Can. Water Resour. J., 42, 220, https://doi.org/10.1080/07011784.2016.1184590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, J., and Coauthors, 2010: NOAA’s community hydrologic prediction system. Proc. Fourth Federal Interagency Hydrologic Modeling Conf., Las Vegas, NV, USGS/USDA/USBR, 12 pp., https://acwi.gov/sos/pubs/2ndJFIC/Contents/7E_Roe_12_28_09.pdf.

  • Rossa, A., K. Liechti, M. Zappa, M. Bruen, U. Germann, G. Haase, C. Keil, and P. Krahe, 2011: The COST 731 Action: A review on uncertainty propagation in advanced hydro-meteorological forecast systems. Atmos. Res., 100, 150167, https://doi.org/10.1016/j.atmosres.2010.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, D. Hudak, J. Alford, M. Knight, and J. Conway, 2007: Validation of polarimetric methods for attenuation correction at C band. Proc. 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P11B.12, https://ams.confex.com/ams/33Radar/techprogram/paper_123122.htm.

  • Samuel, J., P. Coulibaly, and R. A. Metcalfe, 2011: Estimation of continuous streamflow in Ontario ungauged basins: Comparison of regionalization methods. J. Hydrol. Eng., 16, 447459, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Şensoy, A., G. Uysal, and A. A. Şorman, 2016: Developing a decision support framework for real-time flood management using integrated models. J. Flood Risk Manage., 11, S866S883, https://doi.org/10.1111/jfr3.12280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., E. Habib, H. Andrieu, and E. Morin, 2015: Hydrologic applications of weather radar. J. Hydrol., 531, 231233, https://doi.org/10.1016/j.jhydrol.2015.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. WMO Tech. Doc. 589, 91 pp.

  • Sills, D. M., and P. I. Joe, 2019: From pioneers to practitioners: A short history of severe thunderstorm research and forecasting in Canada. Atmos.–Ocean, 57, 249261, https://doi.org/10.1080/07055900.2019.1673145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M., A. Ashton, S. Knott, S. Boodoo, S. Bélair, J. Klaassen, and H. Yang, 2016: A billion dollar flash flood in Toronto – Challenges for forecasting and nowcasting. 28th AMS Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., Paper 5B.5A, https://ams.confex.com/ams/28SLS/webprogram/Paper300219.html.

  • Smith, J. A., M. L. Baeck, K. L. Meierdiercks, A. J. Miller, and W. F. Krajewski, 2007: Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour., 30, 20872097, https://doi.org/10.1016/j.advwatres.2006.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugier, J., P. Tabary, J. Gourley, and K. Friedrich, 2006: Evaluation of dual-polarisation technology at C-band for operational weather radar network. EUMETNET Opera 2 Doc., 44 pp., http://opera.radar.tugraz.at/docum/opera_2/OPERA_2006_05_Evaluation_of_dual_polarization_technology.pdf.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teal, M. J., and R. Allan, 2017: Creating a flood warning system for the San Diego River using HEC-RTS software. World Environmental and Water Resources Congress 2017, Sacramento, CA, American Society of Civil Engineers, 263–272, https://doi.org/10.1061/9780784480601.023.

    • Crossref
    • Export Citation
  • Thampapillai, D. J., and W. F. Musgrave, 1985: Flood damage mitigation: A review of structural and nonstructural measures and alternative decision frameworks. Water Resour. Res., 21, 411424, https://doi.org/10.1029/WR021i004p00411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndahl, S., T. Einfalt, P. Willems, J. E. Nielsen, M.-C. ten Veldhuis, K. Arnbjerg-Nielsen, M. R. Rasmussen, and P. Molnar, 2017: Weather radar rainfall data in urban hydrology. Hydrol. Earth Syst. Sci., 21, 13591380, https://doi.org/10.5194/hess-2016-517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tol, R. S., 2016: The impacts of climate change according to the IPCC. Climate Change Econ., 7, 1640004, https://doi.org/10.1142/S2010007816400042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolson, B. A., and C. A. Shoemaker, 2008: Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resour. Res., 44, W04411, https://doi.org/10.1029/2007WR005869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and D. A. Warde, 2014: Ground clutter mitigation for weather radars using the autocorrelation spectral density. J. Atmos. Oceanic Technol., 31, 20492066, https://doi.org/10.1175/JTECH-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRCA, 2009: Final Report: Hydrologic Modelling Mimico Creek. Toronto and Region Conservation Authority Rep., 61 pp., https://trca.ca/app/uploads/2016/07/Final-Report-Hydrologic-Modeling-Mimico-Creek-Dec-2009.pdf.

  • TRCA, 2020a: Watershed features – Etobicoke & Mimico. Toronto and Region Conservation Authority, accessed 9 October 2020, https://trca.ca/conservation/watershed-management/etobicoke-mimico-creek/watershed-features/.

  • TRCA, 2020b: Modelling References Section. Toronto and Region Conservation Authority, accessed 11 October 2020, https://trca.ca/conservation/flood-risk-management/modeling-references-section/.

  • TRCA, 2020c: Mimico Creek Watershed report card. Toronto and Region Conservation Authority, accessed 9 October 2020, https://reportcard.trca.ca/watershed-report-cards/mimico-creek/.

  • Unduche, F., H. Tolossa, D. Senbeta, and E. Zhu, 2018: Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed. Hydrol. Sci. J., 63, 11331149, https://doi.org/10.1080/02626667.2018.1474219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • US Army Corps of Engineers, 2020a: HEC-HMS. US Army Corps of Engineers-Hydrologic Engineering Center, accessed 10 October 2020, https://www.hec.usace.army.mil/software/hec-hms/.

  • US Army Corps of Engineers, 2020b: HEC-RAS. US Army Corps of Engineers-Hydrologic Engineering Center, accessed 10 October 2020, https://www.hec.usace.army.mil/software/hec-ras/features.aspx.

  • US Army Corps of Engineers, 2020c: HEC-RTS. US Army Corps of Engineers-Hydrologic Engineering Center, accessed 10 October 2020, https://www.hec.usace.army.mil/software/hec-rts/features.aspx.

  • Vieux, B. E., and P. B. Bedient, 2004: Assessing urban hydrologic prediction accuracy through event reconstruction. J. Hydrol., 299, 217236, https://doi.org/10.1016/S0022-1694(04)00366-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, https://doi.org/10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vyas, A., and S. John, 2016: A real-time decision support system for river basin management. MATEC Web Conf., 57, 05002, https://doi.org/10.1051/matecconf/20165705002.

    • Crossref
    • Export Citation
  • Wang, L.-P., S. Ochoa-Rodríguez, J. Van Assel, R. D. Pina, M. Pessemier, S. Kroll, P. Willems, and C. Onof, 2015: Enhancement of radar rainfall estimates for urban hydrology through optical flow temporal interpolation and Bayesian gauge-based adjustment. J. Hydrol., 531, 408426, https://doi.org/10.1016/j.jhydrol.2015.05.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, M., M. Cranston, T. Harrison, D. Whitfield, and J. Schellekens, 2009: Recent developments in operational flood forecasting in England, Wales and Scotland. Meteor. Appl., 16, 1322, https://doi.org/10.1002/met.124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijayarathne, D. B., and P. Coulibaly, 2020: Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. J. Hydrol. Reg. Stud., 27, 100646, https://doi.org/10.1016/j.ejrh.2019.100646.

    • Search Google Scholar
    • Export Citation
  • Wijayarathne, D., and P. Coulibaly, 2020c: Application of weather radar for operational hydrology in Canada – A review. Can. Water Resour. J., https://doi.org/10.1080/07011784.2020.1854119.

    • Search Google Scholar
    • Export Citation
  • Wijayarathne, D., S. Boodoo, P. Coulibaly, and D. Sills, 2020a: Evaluation of radar quantitative precipitation estimates (QPEs) as an input of hydrological models for hydrometeorological applications. J. Hydrometeor., 21, 18471864, https://doi.org/10.1175/JHM-D-20-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijayarathne, D., P. Coulibaly, S. Boodoo, and D. Sills, 2020b: Evaluation of radar-gauge merging techniques to be used in operational flood forecasting in urban watersheds. Water, 12, 1494, https://doi.org/10.3390/w12051494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30, 7982, https://doi.org/10.3354/cr030079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2006: WMO Flood Forecasting Initiative: Final Report of the Synthesis Conference on Improved Meteorological and Hydrological Forecasting, https://community.wmo.int/flood-forecasting-initiative.

  • Young, C. B., and N. A. Brunsell, 2008: Evaluating NEXRAD estimates for the Missouri River Basin: Analysis using daily raingauge data. J. Hydrol. Eng., 13, 549553, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(549).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahmatkesh, Z., S. Kumar Jha, P. Coulibaly, and T. Stadnyk, 2019: An overview of river flood forecasting procedures in Canadian watersheds. Can. Water Resour. J., 44, 213229, https://doi.org/10.1080/07011784.2019.1601598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahmatkesh, Z., S. Han, and P. Coulibaly, 2021: Understanding uncertainty in probabilistic floodplain mapping in the time of climate change. Water, 13, 213229, https://doi.org/10.3390/w13091248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, M., S. Jaun, U. Germann, A. Walser, and F. Fundel, 2011: Superposition of three sources of uncertainties in operational flood forecasting chains. Atmos. Res., 100, 246262, https://doi.org/10.1016/j.atmosres.2010.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by Hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 694 366 0
Full Text Views 202 142 28
PDF Downloads 215 137 30

Use of Radar Quantitative Precipitation Estimates (QPEs) for Improved Hydrological Model Calibration and Flood Forecasting

View More View Less
  • 1 aSchool of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
  • | 2 bDepartment of Civil Engineering, McMaster University, Hamilton, Ontario, Canada
  • | 3 cCloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, King City, Ontario, Canada
  • | 4 dDepartment of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, Canada
Restricted access

Abstract

Flood forecasting is essential to minimize the impacts and costs of floods, especially in urbanized watersheds. Radar rainfall estimates are becoming increasingly popular in flood forecasting because they provide the much-needed real-time spatially distributed precipitation information. The current study evaluates the use of radar quantitative precipitation estimates (QPEs) in hydrological model calibration for streamflow simulation and flood mapping in an urban setting. First, S-band and C-band radar QPEs were integrated into event-based hydrological models to improve the calibration of model parameters. Second, rain gauge and radar precipitation estimates’ performances were compared for hydrological modeling in an urban watershed to assess radar QPE’s effects on streamflow simulation accuracy. Third, flood extent maps were produced using coupled hydrological–hydraulic models integrated within the Hydrologic Engineering Center Real-Time Simulation (HEC-RTS) framework. It is shown that the bias correction of radar QPEs can enhance the hydrological model calibration. The radar–gauge merging obtained a Kling–Gupta efficiency, modified peak flow criterion, Nash–Sutcliffe efficiency, and volume error improvement of about +0.42, +0.12, +0.78, and −0.23, respectively, for S-band and +0.64, +0.36, +1.12, and −0.34, respectively, for C-band radar QPEs. Merged radar QPEs are also helpful in running hydrological models calibrated using gauge data. The HEC-RTS framework can be used to produce flood forecast maps using the bias-corrected radar QPEs. Therefore, radar rainfall estimates could be efficiently used to forecast floods in urbanized areas for effective flood management and mitigation. Canadian flood forecasting systems could be efficiently updated by integrating bias-corrected radar QPEs to simulate streamflow and produce flood inundation maps.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dayal Wijayarathne, wijayard@mcmaster.ca

Abstract

Flood forecasting is essential to minimize the impacts and costs of floods, especially in urbanized watersheds. Radar rainfall estimates are becoming increasingly popular in flood forecasting because they provide the much-needed real-time spatially distributed precipitation information. The current study evaluates the use of radar quantitative precipitation estimates (QPEs) in hydrological model calibration for streamflow simulation and flood mapping in an urban setting. First, S-band and C-band radar QPEs were integrated into event-based hydrological models to improve the calibration of model parameters. Second, rain gauge and radar precipitation estimates’ performances were compared for hydrological modeling in an urban watershed to assess radar QPE’s effects on streamflow simulation accuracy. Third, flood extent maps were produced using coupled hydrological–hydraulic models integrated within the Hydrologic Engineering Center Real-Time Simulation (HEC-RTS) framework. It is shown that the bias correction of radar QPEs can enhance the hydrological model calibration. The radar–gauge merging obtained a Kling–Gupta efficiency, modified peak flow criterion, Nash–Sutcliffe efficiency, and volume error improvement of about +0.42, +0.12, +0.78, and −0.23, respectively, for S-band and +0.64, +0.36, +1.12, and −0.34, respectively, for C-band radar QPEs. Merged radar QPEs are also helpful in running hydrological models calibrated using gauge data. The HEC-RTS framework can be used to produce flood forecast maps using the bias-corrected radar QPEs. Therefore, radar rainfall estimates could be efficiently used to forecast floods in urbanized areas for effective flood management and mitigation. Canadian flood forecasting systems could be efficiently updated by integrating bias-corrected radar QPEs to simulate streamflow and produce flood inundation maps.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dayal Wijayarathne, wijayard@mcmaster.ca
Save