• Aich, V., and Coauthors, 2016: Flood projections within the Niger River Basin under future land use and climate change. Sci. Total Environ., 562, 666677, https://doi.org/10.1016/j.scitotenv.2016.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., L. Feyen, F. Dottori, and A. Bianchi, 2015: Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environ. Change, 35, 199212, https://doi.org/10.1016/j.gloenvcha.2015.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. Roo, P. Salamon, K. Wyser, and L. Feyen, 2017: Global projections of river flood risk in a warmer world. Earth’s Future, 5, 171182, https://doi.org/10.1002/2016EF000485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfonso, L., M. M. Mukolwe, and G. Di Baldassarre, 2016: Probabilistic flood maps to support decision-making: Mapping the value of information. Water Resour. Res., 52, 10261043, https://doi.org/10.1002/2015WR017378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, W. H., M. J. Collins, and N. P. Snyder, 2014: Hydroclimatic flood trends in the northeastern United States and linkages with large-scale atmospheric circulation patterns. Hydrol. Sci. J., 59, 16361655, https://doi.org/10.1080/02626667.2013.862339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., and S. N. Gosling, 2014: The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387401, https://doi.org/10.1007/s10584-014-1084-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, J. D., and C. R. Wagner, 2009: Sources of uncertainty in flood inundation maps. J. Flood Risk Manag., 2, 139147, https://doi.org/10.1111/j.1753-318X.2009.01029.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, P. D., M. Trigg, J. Neal, and A. Dabrowa, 2013: LISFLOOD-FP. User manual. School of Geographical Sciences, University of Bristol, 49 pp., https://www.bristol.ac.uk/media-library/sites/geography/migrated/documents/lisflood-manual-v5.9.6.pdf.

  • Bates, P. D., and Coauthors, 2021: Combined modelling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resour. Res., 57, e2020WR028673, https://doi.org/10.1029/2020WR028673.

    • Crossref
    • Export Citation
  • Bopp, G. P., B. A. Shaby, C. E. Forest, and A. Mejía, 2020: Projecting flood-inducing precipitation with a Bayesian analogue model. J. Agric. Biol. Environ. Stat., 25, 229249, https://doi.org/10.1007/s13253-020-00391-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosshard, T., M. Carambia, K. Goergen, S. Kotlarski, P. Krahe, M. Zappa, and C. Schär, 2013: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res., 49, 15231536, https://doi.org/10.1029/2011WR011533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, C., K. D. Holman, B. Rajagopalan, and H. Moradkhani, 2018: A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resour. Res., 54, 243255, https://doi.org/10.1002/2017WR020403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, L. T., 2005: Flood of September 18–19, 2004 in the upper Delaware River basin. USGS Open-File Rep. 2005-1166, 123 pp., https://pubs.er.usgs.gov/publication/ofr20051166.

  • Chaplin, J. J., 2005: Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland. USGS Scientific Investigations Rep. 2005-5147, 34 pp., http://pubs.usgs.gov/sir/2005/5147/.

    • Crossref
    • Export Citation
  • Chen, J., F. P. Brissette, A. Poulin, and R. Leconte, 2011: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011WR010602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., Y. E. Yang, R. Ryan, Q. Yu, and E. Brabec, 2017: Assessing climate change-induced flooding mitigation for adaptation in Boston’s Charles River watershed, USA. Landscape Urban Plann., 167, 2536, https://doi.org/10.1016/j.landurbplan.2017.05.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinotto, P. J., 2003: Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland (No. 3). USGS Water-Resources Investigations Rep. 2003-4014, 27 pp., http://pubs.er.usgs.gov/publication/wri034014.

  • Clune, J. W., J. J. Chaplin, and K. E. White, 2018: Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York (ver. 1.1, July 2020). USGS Scientific Investigations Rep. 2018-5066, 20 pp., https://pubs.er.usgs.gov/publication/sir20185066.

  • Coles, S. G., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 225 pp.

    • Crossref
    • Export Citation
  • Collet, L., L. Beevers, and M. D. Stewart, 2018: Decision-making and flood risk uncertainty: Statistical data set analysis for flood risk assessment. Water Resour. Res., 54, 72917308, https://doi.org/10.1029/2017WR022024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Moel, H., B. Jongman, H. Kreibich, B. Merz, E. Penning-Rowsell, and P. J. Ward, 2015: Flood risk assessments at different spatial scales. Mitigation Adapt. Strategies Global Change, 20, 865890, https://doi.org/10.1007/s11027-015-9654-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M., R. N. Palmer, and J. K. Roundy, 2016: Regional climate change projections of streamflow characteristics in the Northeast and Midwest US. J. Hydrol. Reg. Stud., 5, 309323, https://doi.org/10.1016/j.ejrh.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., and P. Coulibaly, 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, https://doi.org/10.1016/j.jhydrol.2004.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobler, C., G. Bürger, and J. Stötter, 2012: Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. J. Hydrol., 460, 2939, https://doi.org/10.1016/j.jhydrol.2012.06.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DRBC, 2006: Flooding events in the Delaware River basin. Delaware River Basin Commission, accessed July 2019, https://www.state.nj.us/drbc/hydrological/flood/drb-flood-events.html.

  • England, J. F., Jr., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas Jr., A. G. Veilleux, J. E. Kiang, and R. R. Mason Jr., 2018: Guidelines for determining flood flow frequency. USGS Bull. 17C, Techniques and Methods 4-B5, 148 pp., https://pubs.usgs.gov/tm/04/b05/tm4b5.pdf.

  • FCSMA, 2020: Flood history. Flood Control Sunbury Municipal Authority, http://sunburyfloodcontrol.com/flood-history.html.

  • FEMA, 2019: Flood Insurance Rate Map (FIRM). Federal Emergency Management Agency, https://www.fema.gov/flood-insurance-rate-map-firm.

  • Feyen, L., R. Dankers, K. Bódis, P. Salamon, and J. I. Barredo, 2012: Fluvial flood risk in Europe in present and future climates. Climatic Change, 112, 4762, https://doi.org/10.1007/s10584-011-0339-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FSF, 2020: The first national flood risk assessment: Defining America’s growing risk. The First Street Foundation, 163 pp., https://assets.firststreet.org/uploads/2020/06/first_street_foundation__first_national_flood_risk_assessment.pdf.

  • Gangrade, S., S. C. Kao, and R. A. McManamay, 2020: Multi-model Hydroclimate projections for the Alabama-Coosa-Tallapoosa River Basin in the southeastern United States. Sci. Rep., 10, 2870, https://doi.org/10.1038/s41598-020-59806-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gitro, C. M., M. S. Evan, and R. H. Grumm, 2014: Two major heavy rain/flood events in the Mid-Atlantic: June 2006 and September 2011. J. Operat. Meteor., 2, 152168, https://doi.org/10.15191/nwajom.2014.0213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, M., S. Sharma, S. Reed, and A. Mejia, 2019: Skill of ensemble flood inundation forecasts at short-to medium-range timescales. J. Hydrol., 568, 207220, https://doi.org/10.1016/j.jhydrol.2018.10.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gori, A., N. Lin and J. Smith, 2020: Assessing compound flooding from landfalling tropical cyclones on the North Carolina coast. Water Resour. Res., 56, e2019WR026788, https://doi.org/10.1029/2019WR026788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, F. F., and Coauthors, 2017: Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 141, 561576, https://doi.org/10.1007/s10584-016-1829-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2018: Our changing climate. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 72–144.

  • Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanaes, 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, https://doi.org/10.1038/nclimate1911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C. H., J. A. Fry, and C. A. Barnes, 2012: The National Land Cover Database. USGS Fact Sheet 2012–3020, 4 pp., https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects.

  • Huang, S., F. F. Hattermann, V. Krysanova, and A. Bronstert, 2013: Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 116, 631663, https://doi.org/10.1007/s10584-012-0586-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iulo, L., and Coauthors, 2020: Establishing priorities for Pennsylvania community flood resilience. PSIRC, 7 pp., accessed 17 September 2020, https://www.psirc.psu.edu/misc/Iulo_etal_2020.Establishing_Priorities_White_Paper.pdf.

  • Jongman, B., and Coauthors, 2015: Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl. Acad. Sci. USA, 112, E2 271E2 280, https://doi.org/10.1073/pnas.1414439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jovanovic, T., A. Mejía, H. Gall, and J. Gironás, 2016: Effect of urbanization on the long-term persistence of streamflow records. Physica A, 447, 208221, https://doi.org/10.1016/j.physa.2015.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jovanovic, T., S. García, H. Gall, and A. Mejía, 2017: Complexity as a streamflow metric of hydrologic alteration. Stochastic Environ. Res. Risk Assess., 31, 21072119, https://doi.org/10.1007/s00477-016-1315-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jovanovic, T., F. Sun, T. Mahjabin, and A. Mejia, 2018: Disentangling the effects of climate and urban growth on streamflow for sustainable urban development: A stochastic approach to flow regime attribution. Landscape Urban Plann., 177, 160170, https://doi.org/10.1016/j.landurbplan.2018.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judi, D. R., C. L. Rakowski, S. R. Waichler, Y. Feng, and M. S. Wigmosta, 2018: Integrated modeling approach for the development of climate-informed, actionable information. Water, 10, 775, https://doi.org/10.3390/w10060775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, H., and V. Sridhar, 2018: Assessment of future drought conditions in the Chesapeake Bay watershed. J. Amer. Water Resour. Assoc., 54, 160183, https://doi.org/10.1111/1752-1688.12600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, K., C. Helgeson, and V. Srikrishnan, 2020: Climate risk management. Annu. Rev. Earth Planet. Sci., 49, 95–116, https://doi.org/10.1146/annurev-earth-080320-055847.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., I. Ohn, J. K. Lee, and Y. O. Kim, 2019: Generalizing uncertainty decomposition theory in climate change impact assessments. J. Hydrol. X, 3, 100024, https://doi.org/10.1016/j.hydroa.2019.100024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late 21st century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., S. Reed, M. Smith, Z. Zhang, and D.-J. Seo, 2004: Hydrology Laboratory Research Modeling System (HL-RMS) of the US National Weather Service. J. Hydrol., 291, 297318, https://doi.org/10.1016/j.jhydrol.2003.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., 2006: Nonstationarity versus scaling in hydrology. J. Hydrol., 324, 239254, https://doi.org/10.1016/j.jhydrol.2005.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., D. L. T. Hegger, P. Matczak, and P. P. J. Driessen, 2018: Opinion: Flood-risk reduction: Structural measures and diverse strategies. Proc. Natl. Acad. Sci. USA, 115, 12 32112 325, https://doi.org/10.1073/pnas.1818227115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmin, V. A., 2009: Algorithms of automatic calibration of multiparameter models used in operational systems of flash flood forecasting. Russ. Meteor. Hydrol., 34, 473481, https://doi.org/10.3103/S1068373909070073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmin, V. A., D.-J. Seo, and V. Koren, 2008: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. J. Hydrol., 353, 109128, https://doi.org/10.1016/j.jhydrol.2008.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, M., T. Ouarda, and B. Bobée, 1999: Towards operational guidelines for over-threshold modeling. J. Hydrol., 225, 103117, https://doi.org/10.1016/S0022-1694(99)00167-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S., C. Jing, N. A. Coles, V. Chaplot, N. J. Moore, and J. Wu, 2013: Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic Environ. Res. Risk Assess., 27, 209221, https://doi.org/10.1007/s00477-012-0577-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCuen, R. H., and W. M. Snyder, 1975: A proposed index for comparing hydrographs. Water Resour. Res., 11, 10211024, https://doi.org/10.1029/WR011i006p01021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejia, A. I., and S. M. Reed, 2011a: Role of channel and floodplain cross-section geometry in the basin response. Water Resour. Res., 47, W09518, https://doi.org/10.1029/2010WR010375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejia, A. I., and S. M. Reed, 2011b: Evaluating the effects of parameterized cross section shapes and simplified routing with a coupled distributed hydrologic and hydraulic model. J. Hydrol., 409, 512524, https://doi.org/10.1016/j.jhydrol.2011.08.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merwade, V., F. Olivera, M. Arabi, and S. Edleman, 2008: Uncertainty in flood inundation mapping: Current issues and future directions. J. Hydrol. Eng., 13, 608620, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merwade, V. M., D. R. Maidment, and J. A. Goff, 2006: Anisotropic considerations while interpolating river channel bathymetry. J. Hydrol., 331, 731741, https://doi.org/10.1016/j.jhydrol.2006.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2020: Storm events database. NOAA/NCEI, https://www.ncdc.noaa.gov/stormevents/.

  • Neal, J., I. Villanueva, N. Wright, T. Willis, T. Fewtrell, and P. D. Bates, 2012: How much physical complexity is needed to model flood inundation? Hydrol. Processes, 26, 22642282, https://doi.org/10.1002/hyp.8339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newlin, J. T., and B. R. Hayes, 2015: Hydraulic modeling of glacial dam-break floods on the West Branch of the Susquehanna River, Pennsylvania. Earth Space Sci., 2, 229243, https://doi.org/10.1002/2015EA000096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papoulis, A., and S. U. Pillai, 2002: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 852 pp.

  • Pappenberger, F., K. Beven, M. Horritt, and S. Blazkova, 2005: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol., 302, 4669, https://doi.org/10.1016/j.jhydrol.2004.06.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., P. Matgen, K. J. Beven, J. B. Henry, and L. Pfister, 2006: Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour., 29, 14301449, https://doi.org/10.1016/j.advwatres.2005.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PEMA, 2017: Summary of commonwealth vulnerability analysis. PEMA, https://www.pema.pa.gov/Floodplain-Management/Pages/default.aspx.

  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PIRC, 2018: Pennsylvania infrastructure report card. Accessed 25 May 2018, https://infrastructurereportcard.org/state-item/pennsylvania/.

  • Pralle, S., 2019: Drawing lines: FEMA and the politics of mapping flood zones. Climatic Change, 152, 227237, https://doi.org/10.1007/s10584-018-2287-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, W., C. Zhang, G. Fu, H. Zhou, and J. Liu, 2016: Quantifying uncertainties in extreme flood predictions under climate change for a medium-sized basin in northeastern China. J. Hydrometeor., 17, 30993112, https://doi.org/10.1175/JHM-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.-J. Seo, and D. Participants, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760, https://doi.org/10.1016/j.jhydrol.2004.03.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roland, M. A., and S. A. Hoffman, 2011: Development of flood-inundation maps for the West Branch Susquehanna River near the Borough of Jersey Shore, Lycoming County, Pennsylvania. USGS Scientific Investigations Rep. 2010–5057, 9 pp., https://pubs.er.usgs.gov/publication/sir20105057.

  • Ruhi, A., M. L. Messager, and J. D. Olden, 2018: Tracking the pulse of the Earth’s fresh waters. Nat. Sustainability, 1, 198–203, https://doi.org/10.1038/s41893-018-0047-7.

    • Crossref
    • Export Citation
  • Sagarika, S., A. Kalra, and S. Ahmad, 2014: Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol., 517, 3653, https://doi.org/10.1016/j.jhydrol.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, B. F., and Coauthors, 2020: Collaborative modeling with fine-resolution data enhances flood awareness, minimizes differences in flood perception, and produces actionable flood maps. Earth's Future, 7, e2019EF001391, https://doi.org/10.1029/2019EF001391.

    • Crossref
    • Export Citation
  • Sharma, S., R. Siddique, S. Reed, P. Ahnert, P. A. Mendoza Zúñiga, and A. Mejia, 2018: Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system. Hydrol. Earth Syst. Sci., 22, 18311849, https://doi.org/10.5194/hess-22-1831-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shortle, J., and Coauthors, 2015: Pennsylvania Climate Impacts Assessment Update. Pennsylvania Department of Environmental Protection, 199 pp., https://www.dep.pa.gov/Citizens/climate/Pages/impacts.aspx.

  • Shortle, J., and Coauthors, 2020: Pennsylvania Climate Impacts Assessment Update. Pennsylvania Department of Environmental Protection, 149 pp., https://www.dep.pa.gov/Citizens/climate/Pages/impacts.aspx.

  • Siddique, R., and A. Mejia, 2017: Ensemble streamflow forecasting across the U.S. Mid-Atlantic region with a distributed hydrological model forced by GEFS reforecasts. J. Hydrometeor., 18, 19051928, https://doi.org/10.1175/JHM-D-16-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, G. Villarini, and W. F. Krajewski, 2010: The hydrology and hydrometeorology of flooding in the Delaware River basin. J. Hydrometeor., 11, 841859, https://doi.org/10.1175/2010JHM1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., G. Villarini, and M. L. Baeck, 2011: Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294309, https://doi.org/10.1175/2010JHM1242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012: The distributed model intercomparison project—Phase 2: Motivation and design of the Oklahoma experiments. J. Hydrol., 418–419, 316, https://doi.org/10.1016/j.jhydrol.2011.08.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorribas, M. V., and Coauthors, 2016: Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 136, 555570, https://doi.org/10.1007/s10584-016-1640-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srikrishnan, V., R. Alley, and K. Keller, 2019: Investing in science to improve climate risk management. Eos, Trans. Amer. Geophys. Union, 100, https://doi.org/10.1029/2019EO131077.

    • Crossref
    • Export Citation
  • Sriver, R. L., C. E. Forest, and K. Keller, 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, 54685476, https://doi.org/10.1002/2015GL064546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, A., and J. Tawn, 2004: Bayesian inference for extremes: Accounting for the three extremal types. Extremes, 7, 291307, https://doi.org/10.1007/s10687-004-3479-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, https://doi.org/10.1175/JCLI-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suro, T. P., G. D. Firda, and C. O. Szabo, 2009: Flood of June 26–29, 2006, Mohawk, Delaware, and Susquehanna River basins. USGS Open-File Rep. 2009–1063, 354 pp., http://pubs.usgs.gov/ofr/2009/1063.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNISDR, 2015: Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction, 316 pp., www.unisdr.org/we/inform/publications/42809.

  • U.S. Census Bureau, 2010: Census, profile of general population and housing characteristics: 2010 demographic profile data, Table DP-1, https://www.census.gov/library/publications/2012/dec/cph-1.html.

  • USDOE, 2015: State of Pennsylvania energy sector risk profile. U.S. Department of Energy, https://www.energy.gov/sites/prod/files/2015/05/f22/PA-Energy%20Sector%20Risk%20Profile.pdf.

  • Varis, O., T. Kajander, and R. Lemmelä, 2004: Climate and water: From climate models to water resources management and vice versa. Climatic Change, 66, 321344, https://doi.org/10.1023/B:CLIM.0000044622.42657.d4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, T., and Coauthors, 2017: Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141, 419433, https://doi.org/10.1007/s10584-016-1794-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, F. Serinaldi, J. Bales, P. D. Bates, and W. F. Krajewski, 2009: Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour., 32, 12551266, https://doi.org/10.1016/j.advwatres.2009.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, P. J., and Coauthors, 2015: Usefulness and limitations of global flood risk models. Nat. Climate Change, 5, 712715, https://doi.org/10.1038/nclimate2742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., P. D. Bates, A. M. Smith, C. C. Sampson, K. A. Johnson, J. Fargione, and P. Morefield, 2018: Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett., 13, 034023, https://doi.org/10.1088/1748-9326/aaac65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winsemius, H. C., and Coauthors, 2016: Global drivers of future river flood risk. Nat. Climate Change, 6, 381385, https://doi.org/10.1038/nclimate2893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., G. Huang, H. Yu, Z. Chen, and J. Man, 2014: Impact of climate change on reservoir flood control in the upstream area of the Beijiang River basin, South China. J. Hydrometeor., 15, 22032218, https://doi.org/10.1175/JHM-D-13-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarekarizi, M., V., Srikrishnan, and K. Keller, 2020: Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nat. Commun., 11, 5361, https://doi.org/10.1038/s41467-020-19188-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzar, C. M., H. Hosseiny, R. Siddique, M. Gomez, V. Smith, A. Mejia, and J. Dyer, 2018: A hydraulic multimodel ensemble framework for visualizing flood inundation uncertainty. J. Amer. Water Resour. Assoc., 54, 807819, https://doi.org/10.1111/1752-1688.12656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. D. Dehoff, R. D. Pody, and J. W. Balay, 2010: Detection of streamflow change in the Susquehanna River Basin. Water Resour. Manage., 24, 19471964, https://doi.org/10.1007/s11269-009-9532-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2293 1789 10
Full Text Views 448 306 43
PDF Downloads 421 307 50

Regional Flood Risk Projections under Climate Change

View More View Less
  • 1 aEarth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 bDepartment of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 cDepartment of Geosciences, The Pennsylvania State University, University Park, Pennsylvania
  • | 4 dThayer School of Engineering, Dartmouth College, Hanover, New Hampshire
  • | 5 eDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin, and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alfonso Mejia, aim127@psu.edu

Abstract

Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin, and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alfonso Mejia, aim127@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 246.44 KB)
Save