• Adler, R., M. Sapiano, and J.-J. Wang, 2017a: Precipitation – Global Precipitation Climatology Project (GPCP) Monthly (01B-34). Climate Algorithm Theoretical Basis Doc., revision 2, 33 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation_GPCP-Monthly/AlgorithmDescription_01B-34.pdf.

  • Adler, R., M. Sapiano, and J.-J. Wang, 2017b: Global Precipitation Climatology Project (GPCP) Daily Analysis Precipitation – GPCP Daily CDR. Climate Algorithm Theoretical Basis Doc., 21 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation_GPCP-Daily/AlgorithmDescription_01B-35.pdf.

  • Adler, R., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi, 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, https://doi.org/10.1029/2012GL051592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 1992: Mountain Weather and Climate. 2nd ed. Routledge, 402 pp.

  • Beck, H. E., and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019a: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019b: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, J. I., 1953: Small-scale topographic effects on precipitation distribution in San Dimas experimental forest. Trans. Amer. Geophys. Union, 34, 761768, https://doi.org/10.1029/TR034i005p00761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595, https://doi.org/10.1016/S0309-1708(98)00043-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., E. Habib, and W. F. Krajewski, 2003: Zero-covariance hypothesis in the error variance separation method of radar rainfall verification. Adv. Water Resour., 26, 573580, https://doi.org/10.1016/S0309-1708(02)00163-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., W. F. Krajewski, and G. Villarini, 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8, 13251347, https://doi.org/10.1175/2007JHM814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Nelson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountain terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R., B. R. Nelson, T. Smith, and O. P. Prat, 2018: The AMSU-based hydrological bundle climate data record – Description and comparison with other data sets. Remote Sens., 10, 1640, https://doi.org/10.3390/rs10101640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., M. M. Bitew, F. A. Hirpa, and G. N. Tesfay, 2014: Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain. Water Resour. Res., 50, 87758790, https://doi.org/10.1002/2013WR014500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., G. J. Ciach, and W. F. Krajewski, 2004: A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv. Water Resour., 27, 967980, https://doi.org/10.1016/j.advwatres.2004.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibbert, A. R., 1977: Distribution of precipitation on rugged terrain in Central Arizona. Hydrol. Water Resour. Arizona Southwest, 7, 163173.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., M. Gebremichael, and T. Hopson, 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, https://doi.org/10.1175/2009JAMC2298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., H. Ashouri, D. Braithwaite, and S. Sorooshian, 2014: Precipitation PERSIANN-CDR. Climate Algorithm Theoretical Basis Doc., revision 2, 30 pp., .https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/AlgorithmDescription_01B-16.

  • Huffman, G. J., R. F. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, P. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katiraie-Boroujerdy, P.-S., A. A. Asanjan, K.-L. Hsu, and S. Sorooshian, 2017: Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res., 193, 3649, https://doi.org/10.1016/j.atmosres.2017.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kidd, C., V. Levizzani, and S. Laviola, 2010: Quantitative precipitation estimation from Earth observation satellites. Rainfall: State of the science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 127–158.

    • Crossref
    • Export Citation
  • Leeper, R. D., M. A. Palecki, and E. Davis, 2015: Methods to calculate precipitation from weighing-bucket gauges with redundant depth measurements. J. Atmos. Oceanic Technol., 32, 11791190, https://doi.org/10.1175/JTECH-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., W. Crow, and L. Brocca, 2017: An assessment of the performance of global rainfall estimates without groundbased observations. Hydrol. Earth Syst. Sci., 21, 43474361, https://doi.org/10.5194/hess-21-4347-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., H. Ashouri, K.-L. Hsu, S. Sorooshian, and Q. Duan, 2015: Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeor., 16, 13871396, https://doi.org/10.1175/JHM-D-14-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelides, S., V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. E. Lane, 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512533, https://doi.org/10.1016/j.atmosres.2009.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2004: Climate Data Records from Environmental Satellites: Interim Report. The National Academies Press, 150 pp., https://doi.org/10.17226/10944.

    • Crossref
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., M. Ombadi, S. Sorooshian, K.-L. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. R. Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci., 22, 58015816, https://doi.org/10.5194/hess-22-5801-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nickl, E. C., 2012: Variability in land surface precipitation estimates over 100 plus years with emphasis in mountainous regions. Ph.D. thesis, University of Delaware, 129 pp.

  • Prat, O. P., and B. R. Nelson, 2014: Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data. Atmos. Res., 144, 420, https://doi.org/10.1016/j.atmosres.2013.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002-2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2020: Satellite precipitation measurements and extreme rainfall. Satellite Precipitation Measurement, V. Levizzani et al. Eds., Vol. 2, Springer, 761–790, https://doi.org/10.1007/978-3-030-35798-6_16.

    • Crossref
    • Export Citation
  • Prat, O. P., R. D. Leeper, J. E. Bell, B. R. Nelson, J. Adams, and S. Ansari, 2018: Toward earlier drought detection using remotely sensed precipitation data from the Reference Environmental Data Record (REDR) CMORPH. Geophysical Research Abstracts, Vol. 20, Abstract EGU2018-11468-1, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-11468-1.pdf.

  • Prat, O. P., A. M. Courtright, R. D. Leeper, B. R. Nelson, R. Bilotta, J. Adams, and S. Ansari, 2020: Operational near-real time drought monitoring using global satellite precipitation estimates. 2020 EGU General Assembly, Online, EGU, EGU2020-14871, https://doi.org/10.5194/egusphere-egu2020-14871.

    • Crossref
    • Export Citation
  • Sadeghi, M., A. A. Asanjan, M. Faridzad, V. A. Gorooh, P. Nguyen, K. L. Hsu, S. Sorooshian, and D. Braithwaite, 2019: Evaluation of PERSIANN-CDR constructed using GPCP V2.2 and V2.3 and a comparison with TRMM 3B42 V7 and CPC unified gauge-based analysis in global scale. Remote Sens., 11, 2755, https://doi.org/10.3390/rs11232755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schermerhorn, V. P., 1967: Relations between topography and annual precipitation in western Oregon and Washington. Water Resour. Res., 3, 707711, https://doi.org/10.1029/WR003i003p00707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Sorooshian, S., K. Hsu, X. Gao, H. Gupta, B. Imam, and D. Braithwaite, 2000: Evolution of the PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, W. C., 1947: A determination of the effect of topography upon precipitation. Trans. Amer. Geophys. Union, 28, 285290, https://doi.org/10.1029/TR028i002p00285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and E. N. Anagostou, 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, https://doi.org/10.1175/JHM-D-11-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation datasets: data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 144, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGS, 1996: Global 30 Arc Second Elevation Data (GTOPO 30). U.S. Geological Survey, accessed 17 August 2021, https://doi.org/10.5066/F7DF6PQS.

    • Crossref
    • Export Citation
  • Xie, P., J. E. Janowiak, P A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, https://doi.org/10.1175/2769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, and W. Shi, 2010: CPC Unified gauge-based analysis of global daily precipitation. 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A, https://ams.confex.com/ams/90annual/webprogram/Paper163676.html.

  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, and S. Wu, 2018: Bias-corrected CMORPH high-resolution global precipitation estimates. Climate Algorithm Theoretical Basis Doc, 35 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation-CMORPH/AlgorithmDescription_01B-23.pdf.

All Time Past Year Past 30 Days
Abstract Views 426 388 28
Full Text Views 100 88 5
PDF Downloads 126 111 7

Global Evaluation of Gridded Satellite Precipitation Products from the NOAA Climate Data Record Program

View More View Less
  • 1 aCooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina
  • | 2 bCenter for Weather and Climate, NOAA/NESDIS/NCEI, Asheville, North Carolina
  • | 3 cDepartment of Geography, University of Delaware, Newark, Delaware
Restricted access

Abstract

Three satellite gridded daily precipitation datasets—PERSIANN-CDR, GPCP, and CMORPH—that are part of the NOAA/Climate Data Record (CDR) program are evaluated in this work. The three satellite precipitation products (SPPs) are analyzed over their entire period of record, ranging from over 20 years to over 35 years. The products intercomparisons are performed at various temporal (daily to annual) resolutions and for different spatial domains in order to provide a detailed assessment of each SPP strengths and weaknesses. This evaluation includes comparison with in situ datasets from the Global Historical Climatology Network (GHCN-Daily) and the U.S. Climate Reference Network (USCRN). While the three SPPs exhibited comparable annual average precipitation, significant differences were found with respect to the occurrence and the distribution of daily rainfall events, particularly in the low and high rainfall rate ranges. Using USCRN stations over CONUS, results indicated that CMORPH performed consistently better than GPCP and PERSIANN-CDR for the usual metrics used for SPP evaluation (bias, correlation, accuracy, probability of detection, and false alarm ratio, among others). All SPPs were found to underestimate extreme rainfall (i.e., above the 90th percentile) from about −20% for CMORPH to −50% for PERSIANN-CDR. Those differences in performance indicate that the use of each SPP has to be considered with respect to the application envisioned, from the long-term qualitative analysis of hydroclimatological properties to the quantification of daily extreme events, for example. In that regard, the three satellite precipitation CDRs constitute a unique portfolio that can be used for various long-term climatological and hydrological applications.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier P. Prat, opprat@ncsu.edu

Abstract

Three satellite gridded daily precipitation datasets—PERSIANN-CDR, GPCP, and CMORPH—that are part of the NOAA/Climate Data Record (CDR) program are evaluated in this work. The three satellite precipitation products (SPPs) are analyzed over their entire period of record, ranging from over 20 years to over 35 years. The products intercomparisons are performed at various temporal (daily to annual) resolutions and for different spatial domains in order to provide a detailed assessment of each SPP strengths and weaknesses. This evaluation includes comparison with in situ datasets from the Global Historical Climatology Network (GHCN-Daily) and the U.S. Climate Reference Network (USCRN). While the three SPPs exhibited comparable annual average precipitation, significant differences were found with respect to the occurrence and the distribution of daily rainfall events, particularly in the low and high rainfall rate ranges. Using USCRN stations over CONUS, results indicated that CMORPH performed consistently better than GPCP and PERSIANN-CDR for the usual metrics used for SPP evaluation (bias, correlation, accuracy, probability of detection, and false alarm ratio, among others). All SPPs were found to underestimate extreme rainfall (i.e., above the 90th percentile) from about −20% for CMORPH to −50% for PERSIANN-CDR. Those differences in performance indicate that the use of each SPP has to be considered with respect to the application envisioned, from the long-term qualitative analysis of hydroclimatological properties to the quantification of daily extreme events, for example. In that regard, the three satellite precipitation CDRs constitute a unique portfolio that can be used for various long-term climatological and hydrological applications.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier P. Prat, opprat@ncsu.edu
Save