• Abdelmoneim, H., M. R. Soliman, and H. M. Moghazy, 2020: Evaluation of TRMM 3B42V7 and CHIRPS satellite precipitation products as an input for hydrological model over eastern Nile Basin. Earth Syst. Environ., 4, 685698, https://doi.org/10.1007/s41748-020-00185-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., N. Nasrollahi, and E. Habib, 2009: Accounting for uncertainties of the TRMM satellite estimates. Remote Sens., 1, 606619, https://doi.org/10.3390/rs1030606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2011: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res., 99, 400414, https://doi.org/10.1016/j.atmosres.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayehu, G. T., T. Tadesse, B. Gessesse, and T. Dinku, 2018: Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech., 11, 19211936, https://doi.org/10.5194/amt-11-1921-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Einfalt, T., K. Arnbjerg-Nielsen, C. Golz, N.-E. Jensen, M. Quirmbach, G. Vaes, and B. Vieux, 2004: Towards a roadmap for use of radar rainfall data in urban drainage. J. Hydrol., 299, 186202, https://doi.org/10.1016/S0022-1694(04)00365-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eris, E., and N. Agiralioglu, 2012: Homogeneity and trend analysis of hydrometeorological data of the eastern Black Sea region, Turkey. J. Water Resour. Prot., 04, 99105, https://doi.org/10.4236/jwarp.2012.42012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Q. Zhu, Z. Yang, and H. Wang, 2018: Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and gauge-based datasets in Xiang River basin of China. Water, 10, 1225, https://doi.org/10.3390/w10091225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, https://doi.org/10.1007/978-90-481-2915-7_1.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2015a: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 26 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

  • Hughes, D. A., 2006: Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol., 327, 399410, https://doi.org/10.1016/j.jhydrol.2005.11.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hur, J., S. V. Raghavan, N. S. Nguyen, and S. Y. Liong, 2016: Evaluation of high-resolution satellite rainfall data over Singapore. Procedia Eng., 154, 158167, https://doi.org/10.1016/j.proeng.2016.07.437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hur, J., S. V. Raghavan, N. S. Nguyen, and S. Y. Liong, 2018: Are satellite products good proxies for gauge precipitation over Singapore? Theor. Appl. Climatol., 132, 921932, https://doi.org/10.1007/s00704-017-2132-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, M. N., S. Das, and H. Uyeda, 2010: Calibration of TRMM derived rainfall over Nepal during 1998–2007. Open Atmos. Sci. J., 4, 1223, https://doi.org/10.2174/1874282301004010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95105, https://doi.org/10.1016/j.atmosres.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmoud, M. T., M. A. Al-Zahrani, and H. O. Sharif, 2018: Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol., 559, 112, https://doi.org/10.1016/j.jhydrol.2018.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmoud, M. T., M. A. Hamouda, and M. M. Mohamed, 2019: Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmos. Res., 219, 200212, https://doi.org/10.1016/j.atmosres.2018.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najmaddin, P. M., M. J. Whelan, and H. Balzter, 2017: Application of satellite-based precipitation estimates to rainfall-runoff modelling in a data-scarce semi-arid catchment. Climate, 5, 32, https://doi.org/10.3390/cli5020032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nashwan, M. S., S. Shahid, and X. Wang, 2019: Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sens., 11, 555, https://doi.org/10.3390/rs11050555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirce, C. S., 1884. The numerical measure of the success of predictions. Science, ns-4, 453454, https://doi.org/10.1126/science.ns-4.93.453-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, B., J. Shi, W. Ni-Meister, T. Zhao, and D. Ji, 2014: Evaluation of TRMM multisatellite precipitation analysis (TMPA) products and their potential hydrological application at an arid and semiarid basin in china. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 39153930, https://doi.org/10.1109/JSTARS.2014.2320756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Y. Mintz, 1988: Evaporation of rain falling from convective clouds as derived from radar measurements. J. Appl. Meteor. Climatol., 27, 209215, https://doi.org/10.1175/1520-0450(1988)027%3C0209:EORFFC%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., J. Sheffield, M. Pan, and E. F. Wood, 2015: Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ., 159, 181193, https://doi.org/10.1016/j.rse.2014.11.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., and W. Hamon, 1984: International comparison of national precipitation gauges with a reference pit gauge. WMO/TD-38, IOM Rep. 17, 20 pp., https://library.wmo.int/pmb_ged/wmo-td_38.pdf.

  • Shawky, M., A. Moussa, Q. K. Hassan, and N. El-Sheimy, 2019: Performance assessment of sub-daily and daily precipitation estimates derived from GPM and GSMaP products over an arid environment. Remote Sens., 11, 2840, https://doi.org/10.3390/rs11232840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast., 15, 221232, https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strangeways, I., 2004: Improving precipitation measurement. Int. J. Climatol., 24, 14431460, https://doi.org/10.1002/joc.1075.

  • Tan, M. L., and Z. Duan, 2017: Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9, 720, https://doi.org/10.3390/rs9070720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., A. L. Ibrahim, Z. Duan, A. P. Cracknell, and V. Chaplot, 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens., 7, 15041528, https://doi.org/10.3390/rs70201504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., P. W. Gassman, and A. P. Cracknell, 2017: Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water, 9, 229, https://doi.org/10.3390/w9030229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tekeli, A. E., and H. Fouli, 2016: Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia. J. Hydrol., 541, 471479, https://doi.org/10.1016/j.jhydrol.2016.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesfagiorgis, K., S. E. Mahani, N. Y. Krakauer, and R. Khanbilvardi, 2011: Bias correction of satellite rainfall estimates using a radar-gauge product–a case study in Oklahoma (USA). Hydrol. Earth Syst. Sci., 15, 26312647, https://doi.org/10.5194/hess-15-2631-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toté, C., D. Patricio, H. Boogaard, R. van der Wijngaart, E. Tarnavsky, and C. Funk, 2015: Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens., 7, 17581776, https://doi.org/10.3390/rs70201758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelamani, S., S. Uddin, and S. Anbazhagan, 2016. Kuwait Coast line evolution during 1989–2007. Geoinformatics in Applied Geomorphology, CRC Press, 398 pp.

  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, https://doi.org/10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehbe, Y., D. Ghebreyesus, M. Temimi, A. Milewski, and A. Al Mandous, 2017: Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud., 12, 122135, https://doi.org/10.1016/j.ejrh.2017.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, G., H. , W. T. Crow, Y. Zhu, J. Wang, and J. Su, 2018: Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China. Adv. Meteor., 2018, 3024190, https://doi.org/10.1155/2018/3024190.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., Y. Lu, M. L. Tan, X. Li, G. Wang, and R. He, 2020: Nine-year systematic evaluation of the GPM and TRMM precipitation products in the Shuaishui River Basin in east-central China. Remote Sens., 12, 1042, https://doi.org/10.3390/rs12061042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., M. Brandt, F. Guichard, Q. Tian, and R. Fensholt, 2017: Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the Sahelian rainfall regime. J. Hydrol., 550, 427440, https://doi.org/10.1016/j.jhydrol.2017.05.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 161 86 0
Full Text Views 58 36 4
PDF Downloads 69 45 6

Assessment of Satellite-Based Precipitation Products Performance over the Hyperarid Climate of Kuwait

View More View Less
  • 1 aCivil Engineering Department, Kuwait University, Kuwait City, Kuwait
Restricted access

Abstract

Precipitation is a complex natural parameter that is essential for water and environmental systems. Due to its variability on the spatial and temporal scales, satellite-based precipitation products (SPPs) have arisen interest in hydrology and meteorology applications. This study measures the performance of six high-resolution SPPs [GPM IMERG products (IMERG-E, IMERG-L, and IMERG-F), TMPA products (3B42 V7, 3B42RT V7), and PERSIANN product] in producing the observed precipitation over a hyperarid climate, water-scarce region for the period 2013–18. It also evaluates their performance dependency on the aggregation time step and topographic elevations. According to a number of continuous and categorical evaluation metrics: (i) SPPs overestimate the observed daily annual and seasonal precipitation, particularly with near-real-time products; (ii) all SPPs estimates depict correlation ranging from 0.68 to 0.84 with the annual and seasonal precipitation and weak correlations in dry season; and (iii) their ability to detect rain/no-rain events is measured by Peirce’s skill score (PSS), ranging from 0.73 to 0.92 across annual and seasonal scales, whereas 3B42RT V7 reproduces lower PSSs. Furthermore, the study finds that aggregation to a monthly time step improves only SPP correlations. The performance of near-real-time products shows significant dependency on elevations, especially with 3B42RT V7, which shows low skills at coastlands. The TMPA products’ ability to detect rain/no-rain events dramatically drops from highlands to coastlands, with low skills to generate observed no/tiny and light precipitation classes. The study addresses an adequate ability of IMERG-F and PERSIANN to be utilized in water and environmental studies over hyperarid climate regions, with highlighting for the superiority of IMERG-F.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bandar S. AlMutairi, bandar.saud@ku.edu.kw

Abstract

Precipitation is a complex natural parameter that is essential for water and environmental systems. Due to its variability on the spatial and temporal scales, satellite-based precipitation products (SPPs) have arisen interest in hydrology and meteorology applications. This study measures the performance of six high-resolution SPPs [GPM IMERG products (IMERG-E, IMERG-L, and IMERG-F), TMPA products (3B42 V7, 3B42RT V7), and PERSIANN product] in producing the observed precipitation over a hyperarid climate, water-scarce region for the period 2013–18. It also evaluates their performance dependency on the aggregation time step and topographic elevations. According to a number of continuous and categorical evaluation metrics: (i) SPPs overestimate the observed daily annual and seasonal precipitation, particularly with near-real-time products; (ii) all SPPs estimates depict correlation ranging from 0.68 to 0.84 with the annual and seasonal precipitation and weak correlations in dry season; and (iii) their ability to detect rain/no-rain events is measured by Peirce’s skill score (PSS), ranging from 0.73 to 0.92 across annual and seasonal scales, whereas 3B42RT V7 reproduces lower PSSs. Furthermore, the study finds that aggregation to a monthly time step improves only SPP correlations. The performance of near-real-time products shows significant dependency on elevations, especially with 3B42RT V7, which shows low skills at coastlands. The TMPA products’ ability to detect rain/no-rain events dramatically drops from highlands to coastlands, with low skills to generate observed no/tiny and light precipitation classes. The study addresses an adequate ability of IMERG-F and PERSIANN to be utilized in water and environmental studies over hyperarid climate regions, with highlighting for the superiority of IMERG-F.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bandar S. AlMutairi, bandar.saud@ku.edu.kw
Save