• Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, https://doi.org/10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 16661686, https://doi.org/10.1175/2008MWR2620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assel, R. A., 2005: Classification of annual Great Lakes ice cycles: Winters of 1973-2002. J. Climate, 18, 48954905, https://doi.org/10.1175/JCLI3571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assel, R. A., D. C. Norton, and K. C. Cronk, 2002: A Great Lakes ice cover digital data set for winters 1973-2000. NOAA Tech. Memo. GLERL-121, 46 pp., https://www.glerl.noaa.gov/pubs/tech_reports/glerl-121/tm-121.pdf.

  • Assel, R. A., J. Wang, A. Clites, and X. Bai, 2013: Analysis of Great Lakes ice cover climatology: Winters 2006-2011. NOAA Tech. Memo. GLERL-157, 26 pp., https://www.glerl.noaa.gov/pubs/tech_reports/glerl-157/tm-157.pdf.

  • Austin, J., and S. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice–albedo feedback. Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azar, A. E., H. Ghedira, P. Romanov, S. Mahani, M. Tedesco, and R. Khanbilvardi, 2008: Application of satellite microwave images in estimating snow water equivalent. J. Amer. Water Resour. Assoc., 44, 13471362, https://doi.org/10.1111/j.1752-1688.2008.00227.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bard, L., and D. A. R. Kristovich, 2012: Trend reversal in Lake Michigan contribution to snowfall. J. Appl. Meteor. Climatol., 51, 20382046, https://doi.org/10.1175/JAMC-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H., J. N. S. Cole, J.-J. Morcrette, R. Pincus, and P. Raisanen, 2007: Monte Carlo Independent Column Approximation (McICA): Up and running in North America and Europe. 17th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Monterey, CA, U.S. DOE, https://clouds.eos.ubc.ca/~phil/docs/0327_barker.pdf.

  • Barrett, A. P., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSDIC Special Rep. 11, 19 pp., https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf.

  • Basile, S. J., S. A. Rauscher, and A. L. Steiner, 2017: Projected precipitation changes within the Great Lakes and western Lake Erie Basin: A multi-model analysis of intensity and seasonality. Int. J. Climatol., 37, 48644879, https://doi.org/10.1002/joc.5128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, G. T., F. Giorgi, and S. W. Hostetler, 1993: Toward the simulation of the effects of the Great Lakes on regional climate. Mon. Wea. Rev., 121, 13731387, https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A climatology of snow-to-liquid ratio for the contiguous United States. Wea. Forecasting, 20, 729744, https://doi.org/10.1175/WAF856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff, 2016: Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl., 26, 13381351, https://doi.org/10.1002/15-1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beletsky, D., N. Hawley, Y. R. Rao, H. A. Vanderploeg, R. Beletsky, D. J. Schwab, and S. A. Ruberg, 2012: Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett., 39, L06605, https://doi.org/10.1029/2012GL051002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennington, V., G. A. McKinley, N. Kimura, and C. H. Wu, 2010: General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. J. Geophys. Res., 115, C12015, https://doi.org/10.1029/2010JC006261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennington, V., M. Notaro, and K. D. Holman, 2014: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Climate, 27, 28862911, https://doi.org/10.1175/JCLI-D-13-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., C. Spence, N. Hedstrom, and J. D. Lenters, 2011: Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res., 37, 707716, https://doi.org/10.1016/j.jglr.2011.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8, 26912704, https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botts, L., and B. Krushelnicki, 1988: The Great Lakes: An Environmental Atlas and Resource Book. U.S. Environmental Protection Agency, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Boulard, D., and Coauthors, 2016: Capability of a regional climate model to simulate climate variables requested for water balance computation: A case study over northeastern France. Climate Dyn., 46, 26892716, https://doi.org/10.1007/s00382-015-2724-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 28052823, https://doi.org/10.1175/JCLI-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., C. G. Nolte, and T. L. Otte, 2013: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dyn., 40, 19031920, https://doi.org/10.1007/s00382-012-1440-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briley, L. J., W. S. Ashley, R. B. Rood, and A. Krmenec, 2017: The role of meteorological processes in the description of uncertainty for climate change decision-making. Theor. Appl. Climatol., 127, 643654, https://doi.org/10.1007/s00704-015-1652-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, L. C., and C. R. Duguay, 2010: The response and role of ice cover in lake climate interactions. Prog. Phys. Geogr., 34, 671704, https://doi.org/10.1177/0309133310375653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, O. R., Jr., K. Alapaty, J. A. Herwehe, M. S. Mallard, T. L. Otte, R. C. Gilliam, and C. G. Nolte, 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 2033, https://doi.org/10.1175/JAMC-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, A., M. Kirby, H. Mullins, and W. Patterson, 2003: Increasing Great Lake effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, https://doi.org/10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the conterminous U.S. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 14 pp.

  • Changnon, S. A., Jr., and D. M. A. Jones, 1972: Review of the influences of the Great Lakes on weather. Water Resour. Res., 8, 360371, https://doi.org/10.1029/WR008i002p00360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charusombat, U., and Coauthors, 2018: Evaluating and improving modeled turbulent heat fluxes across the North American Great Lakes. Hydrol. Earth Syst. Sci., 22, 55595578, https://doi.org/10.5194/hess-22-5559-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., H. Liu, and R. C. Beardsley, 2003: An unstructured, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. J. Atmos. Oceanic Technol., 20, 159186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, https://doi.org/10.1029/2009GL037980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. Y., W. Shi, P. P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Miller, and A. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, https://doi.org/10.1029/2000JD900384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Chuang, H. Y., and P. J. Sousounis, 2003: The impact of the prevailing synoptic situation on the lake-aggregate effect. Mon. Wea. Rev., 131, 9901010, https://doi.org/10.1175/1520-0493(2003)131<0990:TIOTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and Coauthors, 2020: Classification of Lake Michigan snow days for estimation of the lake-effect contribution to the downward trend in November snowfall. Int. J. Climatol., 40, 56565670, https://doi.org/10.1002/joc.6542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clow, D. W., L. Nanus, K. L. Verdin, and J. Schmidt, 2012: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Processes, 26, 25832591, https://doi.org/10.1002/hyp.9385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Colucci, S. J., 1976: Winter cyclone frequencies over the eastern United States and adjacent western Atlantic, 1964–1973. Bull. Amer. Meteor. Soc., 57, 548553, https://doi.org/10.1175/1520-0477(1976)057<0548:WCFOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., H. D. Reeves, and S. Zhong, 2015: The dependence of QPF on the choice of boundary- and surface-layer parameterization for a lake-effect snowstorm. J. Appl. Meteor. Climatol., 54, 11771190, https://doi.org/10.1175/JAMC-D-14-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crossman, E. J., and B. C. Cudmore, 1998: Biodiversity of the fishes of the Laurentian Great Lakes: A Great Lakes Fishery Commission project. Ital. J. Zool., 65, 357361, https://doi.org/10.1080/11250009809386846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effect of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Orgeville, M., W. R. Peltier, A. R. Erler, and J. Gula, 2014: Climate change impacts on Great Lakes Basin precipitation extremes. J. Geophys. Res. Atmos., 119, 10 79910 812, https://doi.org/10.1002/2014JD021855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichenlaub, V. L., 1979: Weather and Climate of the Great Lakes Region. University of Notre Dame Press, 335 pp.

  • Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, https://doi.org/10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R., D. Waliser, and C. Peters-Lidard, 2017: NASA Downscaling Project Final Report. NASA/TP-2017-219579, 52 pp., https://trs.jpl.nasa.gov/handle/2014/45705.

  • Fujisaki, A., J. Wang, H. Hu, D. J. Schwab, N. Hawley, and Y. R. Rao, 2013: A modeling study of ice–water processes for Lake Erie applying coupled ice-circulation models. J. Great Lakes Res., 38, 585599, https://doi.org/10.1016/j.jglr.2012.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujisaki-Manome, A., and Coauthors, 2017: Turbulent heat fluxes during an extreme lake-effect snow event. J. Hydrometeor., 18, 31453163, https://doi.org/10.1175/JHM-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., W. J. Gutowski, J. J. Cassano, and M. E. Higgins, 2013: Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J. Climate, 26, 39853999, https://doi.org/10.1175/JCLI-D-12-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, S. McKeen, R. Schmitz, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975, https://doi.org/10.1016/j.atmosenv.2005.04.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronewold, A. D., V. Fortin, B. Lofgren, A. Clites, C. A. Stow, and F. Quinn, 2013: Coasts, water levels, and climate change: A Great Lakes perspective. Climatic Change, 120, 697711, https://doi.org/10.1007/s10584-013-0840-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin, 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471483, https://doi.org/10.1007/s10584-013-0978-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes Basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, https://doi.org/10.1175/JCLI-D-11-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartnett, J. J., J. M. Collins, M. A. Baxter, and D. P. Chambers, 2014: Spatiotemporal snowfall trends in central New York. J. Appl. Meteor. Climatol., 53, 26852697, https://doi.org/10.1175/JAMC-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. H. Leavesley, M. P. Clark, S. L. Markstrom, R. J. Viger, and M. Umemoto, 2006: Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. J. Amer. Water Resour. Assoc., 42, 877890, https://doi.org/10.1111/j.1752-1688.2006.tb04501.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. E. Janowiak, and Y. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, NOAA, 47 pp., http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/1/cover.html.

  • Hong, S.-Y., S. Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, https://doi.org/10.1155/2010/707253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2017: Sensitivity of CONUS summer rainfall to the selection of cumulus parameterization schemes in NU-WRF seasonal simulations. J. Hydrometeor., 18, 16891706, https://doi.org/10.1175/JHM-D-16-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Insua-Costa, D., and G. Miguez-Macho, 2018: A new moisture tagging capability in the Weather Research and Forecasting model: Formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth Syst. Dyn., 9, 167185, https://doi.org/10.5194/esd-9-167-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, F., A. R. Erler, S. K. Frey, and C. G. Fletcher, 2020: Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada. Hydrol. Earth Syst. Sci., 24, 48874902, https://doi.org/10.5194/hess-24-4887-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kling, G. W., and Coauthors, 2003: Confronting Climate Change in the Great Lakes Region: Impacts on Our Communities and Ecosystems. Union of Concerned Scientists and Ecological Society of America, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Kourzeneva, E., 2010: External data for lake parameterization in numerical weather prediction and climate modeling. Boreal Environ. Res., 15, 165177.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and R. A. Steve III, 1995: A satellite study of cloud-band frequencies over the Great Lakes. J. Appl. Meteor., 34, 20832090, https://doi.org/10.1175/1520-0450(1995)034<2083:ASSOCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and R. R. Braham Jr., 1998: Mean profiles of moisture fluxes in snow-filled boundary layers. Bound.-Layer Meteor., 87, 195215, https://doi.org/10.1023/A:1000836401204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and N. F. Laird, 1998: Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811821, https://doi.org/10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30, 1900, https://doi.org/10.1029/2003GL018052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. Ensor, M. Palecki, D. Easterling, D. Robinson, K. G. Hubbard, and K. Redmond, 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 2329, https://doi.org/10.1016/j.jglr.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 3—Climate of the Midwest U.S., NOAA Tech. Rep. NESDIS 142-3, 103 pp., http://www.nesdis.noaa.gov/technical_reports/NOAA_NESDIS_Tech_Report_142-3-Climate_of_the_Midwest_U.S.pdf.

  • Lee, H., D. E. Waliser, R. Ferraro, T. Iguchi, C. D. Peters-Lidard, B. Tian, P. C. Loikith, and D. B. Wright, 2017: Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF. J. Geophys. Res. Atmos., 122, 73717384, https://doi.org/10.1002/2017JD026564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, https://doi.org/10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., J. B. Anderton, P. D. Blanken, C. Spence, and A. E. Suyker, 2013: Assessing the impacts of climate variability and change on Great Lakes evaporation: Implications for water levels and the need for a coordinated observation network. GLISA 2011 Project Rep., 11 pp., http://glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Evaporation.pdf.

  • Li, X., W. Pichel, P. Clemente-Colon, V. Krasnopolosky, and J. Sapper, 2001: Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. Int. J. Remote Sens, 22, 12851303, https://doi.org/10.1080/01431160151144350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., E.-C. Chang, R. Sun, K. Kim, F. J. Tapiador, and G. Lee, 2020: Evaluation of simulated winter precipitation using WRF-ARW during the ICE-POP 2018 field campaign. Wea. Forecasting, 35, 21992213, https://doi.org/10.1175/WAF-D-19-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 28472858, https://doi.org/10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 2014: Simulation of atmospheric and lake conditions in the Laurentian Great Lakes region using the Coupled Hydrosphere–Atmosphere Research Model (CHARM). NOAA Tech. Memo. GLERL-165, 23 pp., https://www.glerl.noaa.gov/pubs/tech_reports/glerl-165/tm-165.pdf.

  • Loikith, P., D. E. Waliser, J. Kim, and R. Ferraro, 2018: Evaluation of cool season precipitation event characteristics over the Northeast US in a suite of downscaled climate model hindcasts. Climate Dyn., 50, 37113727, https://doi.org/10.1007/s00382-017-3837-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., Y. Yang, X. Mai, C. Qui, X. Long, and C. Wang, 2016: Comparison of analysis and spectral nudging techniques for dynamical downscaling with the WRF model over China. Adv. Meteor., 2016, 4761513, https://doi.org/10.1155/2016/4761513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., C. G. Nolte, O. R. Bullock, T. L. Spero, and J. Gula, 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 71937208, https://doi.org/10.1002/2014JD021785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden, 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 10851096, https://doi.org/10.5194/gmd-8-1085-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Castro, D., and Coauthors, 2019: The impact of microphysics parameterization in the simulation of two convective rainfall events over the Central Andres of Peru using WRF-ARW. Atmosphere, 10, 442, https://doi.org/10.3390/atmos10080442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Sushama, and R. Laprise, 2010: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15, 143164.

    • Search Google Scholar
    • Export Citation
  • Mason, L. A., C. M. Riseng, A. D. Gronewold, E. S. Rutherford, J. Wang, A. Clites, S. D. P. Smith, and P. B. McIntyre, 2016: Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Climatic Change, 138, 7183, https://doi.org/10.1007/s10584-016-1721-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, D., 2008: Parameterization of lakes in numerical weather prediction: Description of a lake model. COSMO Tech. Rep. 11, 41 pp.

  • Mitchell, K., 2001: The Community Noah Land Surface Model Public Release Version 2.2 User’s Guide. National Weather Service, National Center for Environmental Prediction, 26 pp., https://ral.ucar.edu/sites/default/files/public/product-tool/unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting Model to parameterization schemes for regional climates of Europe over the period 1990-95. J. Climate, 26, 10021017, https://doi.org/10.1175/JCLI-D-11-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of training stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moukomla, S., and P. D. Blanken, 2017: The estimation of the North American Great Lakes turbulent fluxes using satellite remote sensing and MERRA reanalysis data. Remote Sens., 9, 141, https://doi.org/10.3390/rs9020141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., S. G. Decker, W.-K. Tao, S. E. Lang, J. J. Shi, and K. I. Mohr, 2017: Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor’easter simulations. Geosci. Model Dev., 10, 10331049, https://doi.org/10.5194/gmd-10-1033-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 2003: An analysis of satellite-derived Great Lakes surface temperatures in regards to model simulations of lake effect snow. 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor Soc., P1.9, https://ams.confex.com/ams/pdfpapers/63048.pdf.

  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake-effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013a: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, https://doi.org/10.1175/JCLI-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., A. Zarrin, S. Vavrus, and V. Bennington, 2013b: Simulation of heavy lake-effect snowstorms across the Great Lakes Basin by RegCM4: Synoptic climatology and variability. Mon. Wea. Rev., 141, 19902014, https://doi.org/10.1175/MWR-D-11-00369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., D. Lorenz, C. Hoving, and M. Schummer, 2014: Twenty-first century projections of snowfall and winter severity across central-eastern North America. J. Climate, 27, 65266550, https://doi.org/10.1175/JCLI-D-13-00520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., V. Bennington, and S. Vavrus, 2015: Dynamically downscaled projections of lake-effect snow in the Great Lakes Basin. J. Climate, 28, 16611684, https://doi.org/10.1175/JCLI-D-14-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., M. Schummer, Y. Zhong, S. Vavrus, L. Van Den Elsen, J. Coluccy, and C. Hoving, 2016: Projected influences of changes in weather severity on autumn-winter distributions of dabbling ducks in the Mississippi and Atlantic Flyways during the twenty-first century. PLOS ONE, 11, e0167506, https://doi.org/10.1371/journal.pone.0167506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., andCoauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Orr, A., C. Listowski, M. Couttet, E. Collier, W. Immerzeel, P. Deb, and D. Bannister, 2017: Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. J. Geophys. Res. Atmos., 122, 62986318, https://doi.org/10.1002/2016JD025801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 70467066, https://doi.org/10.1175/JCLI-D-12-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., A. Ballantyne, K. Jensco, M. Sweet, and S. W. Running, 2014: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, https://doi.org/10.1002/joc.4127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., M. D’Orgeville, A. R. Erler, and F. Xie, 2018: Uncertainty in future summer precipitation in the Laurentian Great Lakes Basin: Dynamical downscaling and the influence of continental-scale processes on regional climate change. J. Climate, 31, 26512673, https://doi.org/10.1175/JCLI-D-17-0416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646652, https://doi.org/10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Coauthors, 2003: Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8844, https://doi.org/10.1029/2002JD003301.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., D. Scavia, C. Downer, M. Gaden, L. Iverson, R. Nordstrom, J. Patz, and G. P. Robertson, 2014: Ch. 18: Midwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 418–440, https://nca2014.globalchange.gov/downloads/low/NCA3_Full_Report_18_Midwest_LowRes.pdf.

    • Crossref
    • Export Citation
  • Qiu, B., and Coauthors, 2020: Implementation and evaluation of an improved lake scheme in Beijing Climate Center Atmosphere-Vegetation Interaction Model. J. Geophys. Res. Atmos., 125, e2019JD031272, https://doi.org/10.1029/2019JD031272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., C. L. Castro, R. A. Pielke Sr., H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113, D05108, https://doi.org/10.1029/2007JD009461.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, Y., D. A. R. Kristovich, and M. R. Hjelmfelt, 2007: Lake-to-lake cloud bands: Frequencies and locations. Mon. Wea. Rev., 135, 42024213, https://doi.org/10.1175/2007MWR1960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part I: Model description. Tech. Rep. 349, 127 pp., https://mpimet.mpg.de/fileadmin/models/echam/mpi_report_349.pdf.

  • Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Schoof, J., 2013: Historical and projected changes in human heat stress in the Midwestern United States. Climate Change in The Midwest: Impacts, Risks, Vulnerability, and Adaptation, S. C. Pryor, Ed., Indiana University Press, 146–157.

  • Schwab, D. J., G. Leshkevich, and G. Muhr, 1992: Satellite measurements of surface water temperature in the Great Lakes: Great Lakes Coastwatch. J. Great Lakes Res., 18, 247258, https://doi.org/10.1016/S0380-1330(92)71292-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwab, D. J., G. A. Leshkevich, and G. C. Muhr, 1999: Automated mapping of surface water temperature in the Great Lakes. J. Great Lakes Res., 25, 468481, https://doi.org/10.1016/S0380-1330(99)70755-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and F. A. Huff, 1996: Impacts of Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and F. A. Huff, 1997: Lake effects on climate conditions in the Great Lakes basin. Illinois Water Survey MCC Research Rep. 97-01, 73 pp., https://www.isws.illinois.edu/pubdoc/CR/ISWSCR-617.pdf.

  • Sharma, A., and Coauthors, 2018: The need for an integrated land-lake-atmosphere modeling system, exemplified by North America’s Great Lakes region. Earth’s Future, 6, 13661379, https://doi.org/10.1029/2018EF000870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., A. F. Hamlet, and H. J. S. Fernando, 2019: Lessons from inter-comparison of decadal climate simulations and observations for the Midwest U.S. and Great Lakes region. Atmosphere, 10, 266, https://doi.org/10.3390/atmos10050266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20-22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Q., and P. Xue, 2019: Impact of lake surface temperature variations on lake effect snow over the Great Lakes region. J. Geophys. Res. Atmos., 124, 12 55312 567, https://doi.org/10.1029/2019JD031261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Spence, C., P. D. Blanken, N. Hedstrom, V. Fortin, and H. Wilson, 2011: Evaporation from Lake Superior: 2. Spatial distribution and variability. J. Great Lakes Res., 37, 717724, https://doi.org/10.1016/j.jglr.2011.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, C., P. D. Blanken, J. D. Lenters, and N. Hedstrom, 2013: The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior. J. Hydrometeor., 14, 16471658, https://doi.org/10.1175/JHM-D-12-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, C., N. Hedstrom, P. D. Blanken, J. Lenters, and G. J. Cutrell, 2019: Great Lakes Evaporation Network (GLEN) data. Great Lakes Observing System (GLOS), http://tds.glos.us/thredds/catalog/glos/glen/catalog.html.

  • Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte, 2014: Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model. J. Geophys. Res. Atmos., 119, 11 68211 694, https://doi.org/10.1002/2014JD022173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spero, T. L., C. G. Nolte, J. H. Bowden, M. S. Mallard, and J. A. Herwehe, 2016: The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF Model. J. Climate, 29, 839853, https://doi.org/10.1175/JCLI-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stepanenko, V. M., S. Goyette, A. Martynov, M. Perroud, X. Fang, and D. Mironov, 2010: First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Environ. Res., 15, 191202.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., W. J. Riley, and D. V. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, https://doi.org/10.1029/2011MS000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suriano, Z. J., and D. J. Leathers, 2017: Synoptically classified lake-effect snowfall trends to the lee of Lakes Erie and Ontario. Climate Res., 74, 113, https://doi.org/10.3354/cr01480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., S. Wang, X. Niu, P. Hui, P. Zong, and X. Wang, 2017: Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Climate Dyn., 48, 23392357, https://doi.org/10.1007/s00382-016-3208-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol., 190, 214251, https://doi.org/10.1016/S0022-1694(96)03128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R. B. Cook, 2014: Daymet: Daily surface weather on a 1-km grid for North America, version 2. Oak Ridge National Laboratory Distributed Active Archive Center, accessed 15 November 2014, https://doi.org/10.3334/ORNLDAAC/1219.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorovich, P., 2009: America’s emerging megaregions and implications for a national growth strategy. Int. J. Public Sector Manage., 22, 221234, https://doi.org/10.1108/09513550910949208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaccaro, L., and J. Read, 2011: Vital to our nation’s economy: Great Lakes jobs. Michigan Sea Grant 2011 Rep., 7 pp., http://www.fws.gov/glri/documents/2011GreatLakesJobsReport.pdf.

  • Van Cleave, K., J. D. Lenters, J. Wang, and E. M. Verhamme, 2014: A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Nino winter of 1997-1998. Limnol. Oceanogr., 59, 18891898, https://doi.org/10.4319/lo.2014.59.6.1889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and V. R. Kotamarthi, 2013: Assessment of dynamical downscaling in near-surface fields with different spectral nudging approaches using the Nested Regional Climate Model (NRCM). J. Appl. Meteor. Climatol., 52, 15761591, https://doi.org/10.1175/JAMC-D-12-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Hu, D. Schwab, G. Leshkevich, D. Beletsky, N. Hawley, and A. Clites, 2010: Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003–2004. J. Great Lakes Res., 36, 425436, https://doi.org/10.1016/j.jglr.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329, https://doi.org/10.1175/2011JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weston, M., N. Chaouch, V. Valappil, M. Temimi, M. Ek, and W. Zheng, 2019: Assessment of the sensitivity to the thermal roughness length in Noah and Noah-MP Land Surface Model using WRF in an arid region. Pure Appl. Geophys., 176, 21212137, https://doi.org/10.1007/s00024-018-1901-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., R. W. Arritt, and S. C. Pryor, 2012: Climate projections for the Midwest: Availability, interpretation and synthesis. US National Climate Assessment Midwest Tech. Input Rep., 24 pp., http://glisa.umich.edu/media/files/NCA/MTIT_Future.pdf.

  • Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670689, https://doi.org/10.1175/MWR-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., C. Peters-Lidard, W.-K. Tao, and W. Peterson, 2016: Evaluation of NU-WRF rainfall forecasts for IFloodS. J. Hydrometeor., 17, 13171335, https://doi.org/10.1175/JHM-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., and K. Hayhoe, 2004: Climate change projections for the United States Midwest. Mitigation Adapt. Strategies Global Change, 9, 335363, https://doi.org/10.1023/B:MITI.0000038843.73424.de.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., K. Hayhoe, and J. Parzen, 2010: Introduction: Assessing the effects of climate change on Chicago and the Great Lakes. J. Great Lakes Res., 36, 16, https://doi.org/10.1016/j.jglr.2009.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, https://doi.org/10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xiao, C., B. M. Lofgren, J. Wang, and P. Y. Chu, 2016: Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes. J. Adv. Model. Earth Syst., 8, 19691985, https://doi.org/10.1002/2016MS000717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, C., B. M. Lofgren, and J. Wang, 2018: WRF-based assessment of the Great Lakes’ impact on cold season synoptic cyclones. Atmos. Res., 214, 189203, https://doi.org/10.1016/j.atmosres.2018.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. K. Frey, A. Boluwade, A. R. Erler, O. Khader, D. R. Lapen, and E. Sudicky, 2019: Evaluation of variability among different precipitation products in the Northern Great Plains. J. Hydrol. Reg. Stud., 24, 100608, https://doi.org/10.1016/j.ejrh.2019.100608.

    • Search Google Scholar
    • Export Citation
  • Xue, P., D. J. Schwab, and S. Hu, 2015: An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior. J. Geophys. Res. Oceans, 120, 52335253, https://doi.org/10.1002/2015JC010740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, P., J. S. Pal, X. Ye, J. D. Lenters, C. Huang, and P. Y. Chu, 2017: Improving the simulation of large lakes in regional climate modeling: Two-way lake–atmosphere coupling with a 3D hydrodynamic model of the Great Lakes. J. Climate, 30, 16051627, https://doi.org/10.1175/JCLI-D-16-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, T.-Y., J. Kessler, L. Mason, P. Y. Chu, and J. Wang, 2020: A consistent Great Lakes ice cover digital data set for winters 1973-2019. Sci. Data, 7, 259, https://doi.org/10.1038/s41597-020-00603-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, X., E. J. Anderson, P. Y. Chu, C. Huang, and P. Xue, 2019: Impact of water mixing and ice formation on the warming of Lake Superior: A model-guided mechanism study. Limnol. Oceanogr., 64, 558574, https://doi.org/10.1002/lno.11059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahmatkesh, Z., D. Tapsoba, J. Leach, and P. Coulibaly, 2019: Evaluation and bias correction of SNODAS snow water equivalent (SWE) for streamflow simulation in eastern Canadian basins. Hydrol. Sci. J., 64, 15411555, https://doi.org/10.1080/02626667.2019.1660780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Zhao, D. Hein-Griggs, T. Janes, S. Tucker, and J. J. H. Ciborowski, 2020: Climate change projections of temperature and precipitation for the Great Lakes Basin using the PRECIS regional climate model. J. Great Lakes Res., 46, 255266, https://doi.org/10.1016/j.jglr.2020.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., X. Li, X. Bian, W. E. Heilman, L. R. Leung, and W. I. Gustafson Jr., 2012: Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets. J. Great Lakes Res., 38, 212225, https://doi.org/10.1016/j.jglr.2012.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., M. Notaro, S. J. Vavrus, and M. J. Foster, 2016: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr., 61, 17621786, https://doi.org/10.1002/lno.10331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobel, Z., J. Wang, D. J. Wuebbles, and V. R. Kotamarthi, 2017: High-resolution dynamical downscaling ensemble projections of future extreme temperature distributions for the United States. Earth’s Future, 5, 12341251, https://doi.org/10.1002/2017EF000642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobel, Z., J. Wang, D. J. Wuebbles, and V. R. Kotamarthi, 2018: Analyses for high-resolution projections through the end of the 21st century for precipitation extremes over the United States. Earth’s Future, 6, 14711490, https://doi.org/10.1029/2018EF000956.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 277 6
Full Text Views 181 138 21
PDF Downloads 204 155 20

Cold Season Performance of the NU-WRF Regional Climate Model in the Great Lakes Region

View More View Less
  • 1 aNelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 bSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 3 cDepartment of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, Houghton, Michigan
  • | 4 dHydrosphere, Biosphere, and Geophysics Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 5 eNASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 6 fIllinois State Water Survey, University of Illinois at Urbana–Champaign, Champaign, Illinois
  • | 7 gNOAA/National Environmental Satellite, Data, and Information Service, Madison, Wisconsin
Restricted access

Abstract

As Earth’s largest collection of freshwater, the Laurentian Great Lakes have enormous ecological and socioeconomic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to address complex limnological processes and lake–atmosphere interactions. In response to this need, the current paper focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (NU-WRF) simulations for the 2014/15 cold season. The study aims to identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is amplified by coupling to a 1D lake model but diminished by applying the Community Atmosphere Model radiation scheme and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior and Huron. The research team is currently addressing these key limitations by coupling NU-WRF to a 3D lake model in support of the next generation of regional climate models for the critical Great Lakes Basin.

Significance Statement

Climate change poses a serious threat to the vital natural resources of the Laurentian Great Lakes region. Complex lake–atmosphere interactions and limnological processes are a challenge for regional climate models. To address the threat of climate change, there is a clear need to further evaluate and develop modeling tools for the Great Lakes Basin. Here, we evaluate the regional performance of the National Aeronautics and Space Administration’s regional climate model at high spatial resolution in support of ongoing efforts to develop the next generation modeling tool for the Great Lakes region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yafang Zhong, yafangzhong@wisc.edu

Abstract

As Earth’s largest collection of freshwater, the Laurentian Great Lakes have enormous ecological and socioeconomic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to address complex limnological processes and lake–atmosphere interactions. In response to this need, the current paper focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (NU-WRF) simulations for the 2014/15 cold season. The study aims to identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is amplified by coupling to a 1D lake model but diminished by applying the Community Atmosphere Model radiation scheme and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior and Huron. The research team is currently addressing these key limitations by coupling NU-WRF to a 3D lake model in support of the next generation of regional climate models for the critical Great Lakes Basin.

Significance Statement

Climate change poses a serious threat to the vital natural resources of the Laurentian Great Lakes region. Complex lake–atmosphere interactions and limnological processes are a challenge for regional climate models. To address the threat of climate change, there is a clear need to further evaluate and develop modeling tools for the Great Lakes Basin. Here, we evaluate the regional performance of the National Aeronautics and Space Administration’s regional climate model at high spatial resolution in support of ongoing efforts to develop the next generation modeling tool for the Great Lakes region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yafang Zhong, yafangzhong@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 630.22 KB)
Save