• Aguado, E., 1985: Radiation balances of melting snow covers at an open site in the Central Sierra Nevada, California. Water Resour. Res., 21, 16491654, https://doi.org/10.1029/WR021i011p01649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahl, R. S., S. W. Woods, and H. R. Zuuring, 2008: Hydrologic calibration and validation of SWAT in a snow-dominated rocky mountain watershed, Montana, U.S.A. J. Amer. Water Resour. Assoc., 44, 14111430, https://doi.org/10.1111/j.1752-1688.2008.00233.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amorocho, J., and B. Espildora, 1966: Mathematical simulation of the snow melting process. Department of Water Science and Engineering, University of California, Davis, 156 pp.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1973: National Weather Service River Forecast system—Snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17, 87 pp., https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/snow/AndersonHYDRO17.pdf.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, K. J., R. D. Brown, C. Derksen, and T. H. Painter, 2018: Estimating snow-cover trends from space. Nat. Climate Change, 8, 924928, https://doi.org/10.1038/s41558-018-0318-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., N. Dawson, and X. Zeng, 2016a: Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth Space Sci., 3, 246256, https://doi.org/10.1002/2016EA000174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., X. Zeng, and N. Dawson, 2016b: Why do global reanalyses and land data assimilation products underestimate snow water equivalent? J. Hydrometeor., 17, 27432761, https://doi.org/10.1175/JHM-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P., X. Zeng, and N. Dawson, 2019: Daily 4 km gridded SWE and snow depth from assimilated in-situ and modeled data over the conterminous US, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 11 May 2020, https://doi.org/10.5067/0GGPB220EX6A.

    • Search Google Scholar
    • Export Citation
  • Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the coterminous US. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 14 pp., https://westernsnowconference.org/node/185.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2014a: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, https://doi.org/10.1002/2014JD022167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., C. Liu, J. Dudhia, and M. Chen, 2014b: A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. J. Geophys. Res. Atmos., 119, 72717291, https://doi.org/10.1002/2014JD021827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Long, Y. Hong, C. Zeng, and D. Yan, 2017: Improved modeling of snow and glacier melting by a progressive two‐stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res., 53, 24312466, https://doi.org/10.1002/2016WR019656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1964: Handbook of Applied Hydrology. McGraw-Hill, 1495 pp.

  • Crow, W. T., M. Drusch, and E. F. Wood, 2001: An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval. IEEE Trans. Geosci. Remote Sensing, 39, 16221631, https://doi.org/10.1109/36.942540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Coauthors, 2005: An observing system simulation experiment for hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sensing, 43, 12891303, https://doi.org/10.1109/TGRS.2005.845645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., and Coauthors, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, W. P. Gibson, T. W. Parzybok, G. L. Johnson, and P. A. Pasteris, 2000: High-quality spatial climate data sets for the United States and Beyond. Trans. ASAE, 43, 19571962, https://doi.org/10.13031/2013.3101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, N., P. Broxton, and X. Zeng, 2018: Evaluation of remotely sensed snow water equivalent and snow cover extent over the contiguous United States. J. Hydrometeor., 19, 17771791, https://doi.org/10.1175/JHM-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and M. G. Bosilovich, 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, https://doi.org/10.1175/JCLI-D-11-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demirel, M. C., J. Mai, G. Mendiguren, J. Koch, L. Samaniego, and S. Stisen, 2018: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrol. Earth Syst. Sci., 22, 12991315, https://doi.org/10.5194/hess-22-1299-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmhirn, I., and F. D. Eaton, 1975: Some characteristics of the albedo of snow. J. Appl. Meteor., 14, 375379, https://doi.org/10.1175/1520-0450(1975)014<0375:SCOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., E. H. Bair, and R. E. Davis, 2016: Estimating the spatial distribution of snow water equivalent in the world’s mountains: Spatial distribution of snow in the mountains. Wiley Interdiscip. Rev.: Water, 3, 461474, https://doi.org/10.1002/wat2.1140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duethmann, D., J. Peters, T. Blume, S. Vorogushyn, and A. Güntner, 2014: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resour. Res., 50, 20022021, https://doi.org/10.1002/2013WR014382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., C. Gatebe, E. Kim, N. Molotch, T. H. Painter, M. Raleigh, M. Sandells, and C. Vuyovich, 2018: NASA SnowEx Science Plan: Assessing approaches for measuring water in Earth’s Seasonal Snow, version 1.6. NASA, 68 pp., https://snow.nasa.gov/sites/default/files/SnowEx_Science_Plan_v1.6.pdf.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., P. Viterbo, P. M. A. Miranda, and G. Balsamo, 2012: Complexity of snow schemes in a climate model and its impact on surface energy and hydrology. J. Hydrometeor., 13, 521538, https://doi.org/10.1175/JHM-D-11-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elder, K., L. Brucker, C. Hiemstra, and H. Marshall, 2018. SnowEx17 community snow pit measurements, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 20 July 2020, https://doi.org/10.5067/Q0310G1XULZS.

    • Search Google Scholar
    • Export Citation
  • Elsner, M. M., S. Gangopadhyay, T. Pruitt, L. D. Brekke, N. Mizukami, and M. P. Clark, 2014: How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? J. Hydrometeor., 15, 13841403, https://doi.org/10.1175/JHM-D-13-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enzminger, T. L., E. E. Small, and A. A. Borsa, 2019: Subsurface water dominates Sierra Nevada seasonal hydrologic storage. Geophys. Res. Lett., 46, 11 99312 001, https://doi.org/10.1029/2019GL084589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and P. Etchevers, 2004: Parameter sensitivity in simulations of snowmelt. J. Geophys. Res., 109, D20111, https://doi.org/10.1029/2004JD005036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201136, https://doi.org/10.1175/2009BAMS2629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essou, G. R. C., F. Sabarly, P. Lucas-Picher, F. Brissette, and A. Poulin, 2016: Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling? J. Hydrometeor., 17, 19291950, https://doi.org/10.1175/JHM-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project). Ann. Glaciol., 38, 150158, https://doi.org/10.3189/172756404781814825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, J. L., C. Sun, J. P. Walker, R. Kelly, A. Chang, J. Dong, and H. Powell, 2005: Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing Environ., 94, 187203, https://doi.org/10.1016/j.rse.2004.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., and L. R. Karsten, 2013: Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160175, https://doi.org/10.1016/j.jhydrol.2013.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol., 360, 4866, https://doi.org/10.1016/j.jhydrol.2008.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., P. Butcher, and N. K. Ajami, 2010: Addressing snow model uncertainty for hydrologic prediction. Adv. Water Resour., 33, 820832, https://doi.org/10.1016/j.advwatres.2010.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnaud, C., S. Bélair, M. L. Carrera, C. Derksen, B. Bilodeau, M. Abrahamowicz, N. Gauthier, and V. Vionnet, 2019: Quantifying snow mass mission concept trade-offs using an observing system simulation experiment. J. Hydrometeor., 20, 155173, https://doi.org/10.1175/JHM-D-17-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sensing Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2013: High-resolution global maps of 21st-century forest cover change. Science, 342, 850853, https://doi.org/10.1126/science.1244693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., S. V. Kumar, C. D. Peters-Lidard, and J. A. Santanello, 2012: Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques. Water Resour. Res., 48, W11514, https://doi.org/10.1029/2012WR012337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. H. Leavesley, M. P. Clark, S. L. Markstrom, R. J. Viger, and M. Umemoto, 2006: Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. J. Amer. Water Resourc. Assoc., 42, 877890, https://doi.org/10.1111/j.1752-1688.2006.tb04501.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., and Coauthors, 2019: Can convection-permitting modeling provide decent precipitation for offline high-resolution snowpack simulations over mountains? J. Geophys. Res. Atmos., 124, 12 63112 654, https://doi.org/10.1029/2019JD030823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, M., T. S. Hogue, K. J. Franz, S. A. Margulis, and J. A. Vrugt, 2011: Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes. Adv. Water Resour., 34, 114127, https://doi.org/10.1016/j.advwatres.2010.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., M. P. Clark, D. Kavetski, B. McGurk, T. H. Painter, and J. D. Lundquist, 2016: Combining snow, streamflow, and precipitation gauge observations to infer basin-mean precipitation. Water Resour. Res., 52, 87008723, https://doi.org/10.1002/2015WR018564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtzman, N. M., T. M. Pavelsky, J. S. Cohen, M. L., Wrzesien, and J. D. Herman, 2020: Tailoring WRF and Noah-MP to improve process representation of Sierra Nevada runoff: Diagnostic evaluation and applications. J. Adv. Model. Earth Syst., 12, e2019MS001832, https://doi.org/10.1029/2019MS001832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., J. D. Lundquist, and B. Henn, 2017: Dynamical downscaling improves upon gridded precipitation products in the Sierra Nevada, California. Climate Dyn., 55, 111129, https://doi.org/10.1007/s00382-017-3631-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and Coauthors, 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isenstein, E. M., S. Wi, and Y. C. Ethan Yang, 2015: Calibration of a distributed hydrologic model using streamflow and remote sensing snow data. World Environmental and Water Resources Congress 2015, Austin, TX, American Society of Civil Engineers, 973982, https://doi.org/10.1061/9780784479162.093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Kim, R. S., and Coauthors, 2021: Snow Ensemble Uncertainty Project (SEUP): Quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling. Cryosphere, 15, 771791, https://doi.org/10.5194/tc-15-771-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, J., M. C. Demirel, and S. Stisen, 2018: The SPAtial EFficiency metric (SPAEF): Multiple-component evaluation of spatial patterns for optimization of hydrological models. Geosci. Model Dev., 11, 18731886, https://doi.org/10.5194/gmd-11-1873-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. P. Mahanama, B. Livneh, D. P. Lettenmaier, and R. H. Reichle, 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, https://doi.org/10.1038/ngeo944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2018: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geosci. Model Dev., 11, 50275049, https://doi.org/10.5194/gmd-11-5027-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. Santanello, K. Harrison, Y. Liu, and M. Shaw, 2012a: Land surface Verification Toolkit (LVT) – A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869886, https://doi.org/10.5194/gmd-5-869-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters‐Lidard, S. Yatheendradas, and J. A. Santanello, 2012b: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, https://doi.org/10.1029/2010WR010261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., D. M. Mocko, S. Wang, C. D. Peters-Lidard, and J. Borak, 2019: Assimilation of remotely sensed leaf area index into the Noah-MP land surface model: Impacts on water and carbon fluxes and states over the continental United States. J. Hydrometeor., 20, 13591377, https://doi.org/10.1175/JHM-D-18-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., D. Alsdorf, J. Dozier, G. J. Huffman, M. Pan, and E. F. Wood, 2015: Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res., 51, 73097342, https://doi.org/10.1002/2015WR017616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier, 2017: How much runoff originates as snow in the western United States, and how will that change in the future?. Geophys. Res. Lett., 44, 61636172, https://doi.org/10.1002/2017GL073551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and M. Sturm, 1998: A snow‐transport model for complex terrain. J. Glaciol., 44, 498516, https://doi.org/10.1017/S0022143000002021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006a: A distributed snow‐evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276, https://doi.org/10.1175/JHM548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006b: A meteorological distribution system for high‐resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234, https://doi.org/10.1175/JHM486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S. Berezovskaya, and R. D. Tabler, 2007: Simulating complex snow distributions in windy environments using SnowTran‐3D. J. Glaciol., 53, 241256, https://doi.org/10.3189/172756507782202865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, J., A. Winstral, A. S. Stordal, R. Essery, and T. Jonas, 2017: Improving physically based snow simulations by assimilating snow depths using the particle filter. Water Resour. Res., 53, 11251143, https://doi.org/10.1002/2016WR019092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, https://doi.org/10.1029/92WR01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta, 2015: Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Res., 51, 716728, https://doi.org/10.1002/2014WR015820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, and S. M. Skiles, 2016: An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback. J. Geophys. Res. Atmos., 121, 90699088, https://doi.org/10.1002/2016JD024995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nearing, G. S., W. T. Crow, K. R. Thorp, M. S. Moran, R. H. Reichle, and H. V. Gupta, 2012: Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resour. Res., 48, W05525, https://doi.org/10.1029/2011WR011420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemri, S., and C. Kinnard, 2020: Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability. J. Hydrol., 582, 124474, https://doi.org/10.1016/j.jhydrol.2019.124474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A., K. Sampson, M. P. Clark, A. Bock, R. J. Viger, and D. Blodgett, 2014: A large-sample watershed-scale hydrometeorological dataset for the contiguous USA. UCAR/NCAR, accessed 10 July 2020, https://doi.org/10.5065/D6MW2F4D.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci., 19, 209223, https://doi.org/10.5194/hess-19-209-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, https://doi.org/10.1029/2007JD008674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., 2010: Recent advances in remote sensing of seasonal snow. J. Glaciol., 56, 11411150, https://doi.org/10.3189/002214311796406077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T., 2018: ASO L4 LiDAR snow depth 3m UTM grid, version 1. Subset: Grand Mesa Colorado, NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 2 March 2021, https://doi.org/10.5067/KIE9QNVG7HP0.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., and G. Blöschl, 2008: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240258, https://doi.org/10.1016/j.jhydrol.2008.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., R. Merz, and G. Blöschl, 2007: Uncertainty and multiple objective calibration in regional water balance modelling: Case study in 320 Austrian catchments. Hydrol. Processes, 21, 435446, https://doi.org/10.1002/hyp.6253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prairie, J., and R. Callejo, 2005: Natural flow and salt computation methods, calendar years 1971-1995. U.S. Bureau of Reclamation, 112 pp.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., J. D. Lundquist, and M. P. Clark, 2015: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci., 19, 31533179, https://doi.org/10.5194/hess-19-3153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reba, M. L., D. Marks, T. E. Link, J. Pomeroy, and A. Winstral, 2014: Sensitivity of model parameterizations for simulated latent heat flux at the snow surface for complex mountain sites. Hydrol. Processes, 28, 868881, https://doi.org/10.1002/hyp.9619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollins, M. G., 2009: LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire, 18, 235249, https://doi.org/10.1071/WF08088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, https://doi.org/10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Schmucki, E., C. Marty, C. Fierz, and M. Lehning, 2014: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Reg. Sci. Technol., 99, 2737, https://doi.org/10.1016/j.coldregions.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafii, M., and F. De Smedt, 2009: Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrol. Earth Syst. Sci., 13, 21372149, https://doi.org/10.5194/hess-13-2137-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., 2018: Grand Mesa study plot (version 1). Zenodo, https://doi.org/10.5281/zenodo.1479859.

  • Smyth, E. J., M. S., Raleigh, and E. E. Small, 2020: Improving SWE estimation with data assimilation: The influence of snow depth observation timing and uncertainty. Water Resour. Res., 56, e2019WR026853, https://doi.org/10.1029/2019WR026853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, M. J., and D. H. Ballard, 1991: Color indexing. Int. J. Comput. Vis., 7, 1132, https://doi.org/10.1007/BF00130487.

  • Takala, M., and Coauthors, 2011: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing Environ., 115, 35173529, https://doi.org/10.1016/j.rse.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ter Braak, C. J., and J. A. Vrugt, 2008: Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput., 18, 435446, https://doi.org/10.1007/s11222-008-9104-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin, and J.-P. Villeneuve, 2007: Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Hydrol. Res., 38, 211234, https://doi.org/10.2166/nh.2007.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., and Coauthors, 2016: LS3MIP (v1. 0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Project - Aims, setup and expected outcome. Geosci. Model Dev., 9, 28092832, https://doi.org/10.5194/gmd-9-2809-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, https://doi.org/10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuyovich, C. M., J. M. Jacobs, and S. F. Daly, 2014: Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res., 50, 90889102, https://doi.org/10.1002/2013WR014734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q. J., 1991: The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour. Res., 27, 24672471, https://doi.org/10.1029/91WR01305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., P. Broxton, Y. Fang, A. Behrangi, M. Barlage, X. Zeng, and G.-Y. Niu, 2019: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier western United States. Geophys. Res. Lett., 46, 13 82513 835, https://doi.org/10.1029/2019GL085722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, R. W., M. S. Raleigh, D. McGrath, N. P. Molotch, K. Elder, C. Hiemstra, L. Brucker, and H. P. Marshall, 2020: Within‐stand boundary effects on snow water equivalent distribution in forested areas. Water Resour. Res., 56, e2019WR024905, https://doi.org/10.1029/2019WR024905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., T. M. Pavelsky, S. B. Kapnick, M. T. Durand, and T. H. Painter, 2015: Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada. Int. J. Climatol., 35, 24722484, https://doi.org/10.1002/joc.4136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., M. T. Durand, T. M. Pavelsky, I. M. Howat, S. A. Margulis, and L. S. Huning, 2017: Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. J. Hydrometeor., 18, 11011119, https://doi.org/10.1175/JHM-D-16-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., M. T. Durand, T. M. Pavelsky, S. B. Kapnick, Y. Zhang, J. Guo, and C. K. Shum, 2018: A new estimate of North American mountain snow accumulation from regional climate model simulations. Geophys. Res. Lett., 45, 14231432, https://doi.org/10.1002/2017GL076664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., M. T. Durand, and T. M. Pavelsky, 2019: A reassessment of North American River Basin cool-season precipitation: Developments from a new mountain climatology data set. Water Resour. Res., 55, 35023519, https://doi.org/10.1029/2018WR024106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2017: Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. J. Hydrometeor., 18, 625649, https://doi.org/10.1175/JHM-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., H. V. Gupta, and S. Sorooshian, 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397, https://doi.org/10.1016/S0022-1694(97)00107-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., P. Broxton, and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous United States. Geophys. Res. Lett., 45, 12 94012 947, https://doi.org/10.1029/2018GL079621.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 262 260 36
Full Text Views 219 218 20
PDF Downloads 164 162 18

Development of a “Nature Run” for Observing System Simulation Experiments (OSSEs) for Snow Mission Development

View More View Less
  • 1 aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 bESSIC, University of Maryland, College Park, College Park, Maryland
  • | 3 cNational Center for Atmospheric Research, Boulder, Colorado
  • | 4 dGESTAR, Universities Space Research Association, Columbia, Maryland
  • | 5 eDepartment of Civil and Environmental Engineering, University of Maryland, College Park, College Park, Maryland
  • | 6 fSchool of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 7 gCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 8 hDepartment of Civil, Construction, and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico
  • | 9 iCenter for Water and the Environment, University of New Mexico, Albuquerque, New Mexico
  • | 10 jDepartment of Geography and Geoinformation Sciences, George Mason University, Fairfax, Virginia
Restricted access

Abstract

Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an observing system simulation experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010–20. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from −0.036 to −0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain–snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Melissa Wrzesien, melissa.l.wrzesien@nasa.gov

Abstract

Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an observing system simulation experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010–20. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from −0.036 to −0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain–snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Melissa Wrzesien, melissa.l.wrzesien@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 877 KB)
Save