Where Does the Moisture for North Atlantic Tropical Cyclones Come From?

Albenis Pérez-Alarcón aEnvironmental Physics Laboratory, Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Havana, Cuba

Search for other papers by Albenis Pérez-Alarcón in
Current site
Google Scholar
PubMed
Close
,
Rogert Sorí aEnvironmental Physics Laboratory, Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain
cInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal

Search for other papers by Rogert Sorí in
Current site
Google Scholar
PubMed
Close
,
José C. Fernández-Alvarez aEnvironmental Physics Laboratory, Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Havana, Cuba

Search for other papers by José C. Fernández-Alvarez in
Current site
Google Scholar
PubMed
Close
,
Raquel Nieto aEnvironmental Physics Laboratory, Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain

Search for other papers by Raquel Nieto in
Current site
Google Scholar
PubMed
Close
, and
Luis Gimeno aEnvironmental Physics Laboratory, Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain

Search for other papers by Luis Gimeno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we identified the origin of the moisture associated with the tropical cyclones’ (TCs) precipitation in the North Atlantic Ocean basin during their three well-differentiated life stages between 1980 and 2018. The HURDAT2 database was used to detect the location of 598 TCs during their genesis, maximum intensification peak, and dissipation phases. The global outputs of the Lagrangian FLEXPART model were then used to determine the moisture sources. Using a k-means cluster analysis technique, seven different regions were identified as the most common locations for the genesis and maximum intensity of the TC phases, while six regions were found for the dissipation points. Our results showed that the origin of moisture precipitating was not entirely local over the areas of TC occurrence. The North Atlantic Ocean to the north of the intertropical convergence zone at 10°N (NATL)—especially from tropical latitudes, the Caribbean Sea, and the Gulf of Mexico—provides most of the moisture for TCs (∼87%). The Atlantic Ocean basin southward of the ITCZ (SATL) played a nonnegligible role (∼11%), with its contribution being most pronounced during the TC genesis phase, while the eastern tropical Pacific Ocean made the smallest contribution (∼2%). The moisture supported by TCs varied depending on their category, being higher for hurricanes than for major hurricanes or tropical storms. Additionally, the approach permitted the estimation of the mean residence time of the water vapor uptake that produces the precipitation during TC activity, which ranged between 2.6 and 2.9 days.

Significance Statement

Atmospheric moisture transport plays an important role in the genesis and intensification of tropical cyclones (TCs). In this study, we investigated the moisture source for the genesis, intensification, and dissipation of TCs in the North Atlantic Ocean basin using a Lagrangian approach. This model allowed us to track air masses backward in time from the target area to identify regions where air masses experienced an uptake of moisture prior to reaching the area of interest. The sources were identified individually for each TC, and the results were then combined to provide a broad general picture with some surprising outstanding results, such as the role of the North and South Atlantic and the eastern tropical Pacific as important moisture sources during the different TCs phases and intensities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albenis Pérez-Alarcón, albenis.perez.alarcon@uvigo.es

Abstract

In this study, we identified the origin of the moisture associated with the tropical cyclones’ (TCs) precipitation in the North Atlantic Ocean basin during their three well-differentiated life stages between 1980 and 2018. The HURDAT2 database was used to detect the location of 598 TCs during their genesis, maximum intensification peak, and dissipation phases. The global outputs of the Lagrangian FLEXPART model were then used to determine the moisture sources. Using a k-means cluster analysis technique, seven different regions were identified as the most common locations for the genesis and maximum intensity of the TC phases, while six regions were found for the dissipation points. Our results showed that the origin of moisture precipitating was not entirely local over the areas of TC occurrence. The North Atlantic Ocean to the north of the intertropical convergence zone at 10°N (NATL)—especially from tropical latitudes, the Caribbean Sea, and the Gulf of Mexico—provides most of the moisture for TCs (∼87%). The Atlantic Ocean basin southward of the ITCZ (SATL) played a nonnegligible role (∼11%), with its contribution being most pronounced during the TC genesis phase, while the eastern tropical Pacific Ocean made the smallest contribution (∼2%). The moisture supported by TCs varied depending on their category, being higher for hurricanes than for major hurricanes or tropical storms. Additionally, the approach permitted the estimation of the mean residence time of the water vapor uptake that produces the precipitation during TC activity, which ranged between 2.6 and 2.9 days.

Significance Statement

Atmospheric moisture transport plays an important role in the genesis and intensification of tropical cyclones (TCs). In this study, we investigated the moisture source for the genesis, intensification, and dissipation of TCs in the North Atlantic Ocean basin using a Lagrangian approach. This model allowed us to track air masses backward in time from the target area to identify regions where air masses experienced an uptake of moisture prior to reaching the area of interest. The sources were identified individually for each TC, and the results were then combined to provide a broad general picture with some surprising outstanding results, such as the role of the North and South Atlantic and the eastern tropical Pacific as important moisture sources during the different TCs phases and intensities.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albenis Pérez-Alarcón, albenis.perez.alarcon@uvigo.es
Save
  • Ankur, K., N. K. R. Busireddy, K. K. Osuri, and D. Niyogi, 2020: On the relationship between intensity changes and rainfall distribution in tropical cyclones over the North Indian Ocean. Int. J. Climatol., 40, 20152025, https://doi.org/10.1002/joc.6315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165, https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, https://doi.org/10.1002/qj.783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 4364, https://doi.org/10.1175/JAS3609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., and G. W. Reuter, 2008: Moisture Sources for Extreme Rainfall Events over the Mackenzie River Basin. Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, M. Woo, Ed., Springer, 127136, https://doi.org/10.1007/978-3-540-73936-4_7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, J., and A. P. Barros, 2014: Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol., 34, 494517, https://doi.org/10.1002/joc.3703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, M. Â. V., and M. D. Oyama, 2013: Variabilidade da largura e intensidade da Zona de Convergência Intertropical atlântica: aspectos observacionais. Rev. Bras. Meteor., 28, 305316, https://doi.org/10.1590/S0102-77862013000300007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cloux, S., D. Garaboa-Paz, D. Insua-Costa, G. Miguez-Macho, and V. Pérez-Muñuzuri, 2021: Extreme precipitation events in the Mediterranean area: Contrasting Lagrangian and Eulerian models for moisture sources identification. Hydrol. Earth Syst. Sci., 25, 64656477, https://doi.org/10.5194/hess-25-6465-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corporal-Lodangco, I., M. B. Richman, L. M. Leslie, and P. J. Lamb, 2014: Cluster analysis of North Atlantic tropical cyclones. Proc. Comput. Sci., 36, 293300, https://doi.org/10.1016/j.procs.2014.09.096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dare, R. A., N. E. Davidson, and J. L. McBride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, https://doi.org/10.1175/MWR-D-11-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Leeuw, J., J. Methven, and M. Blackburn, 2017: Physical factors influencing regional precipitation variability attributed using an air mass trajectory method. J. Climate, 30, 73597378, https://doi.org/10.1175/JCLI-D-16-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982: The transformation of tropical an extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets. Mon. Wea. Rev., 110, 412433, https://doi.org/10.1175/1520-0493(1982)110<0412:TTOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., T. C. Nelson, M. Rosenmayer, and K. L. Corbosiero, 2017: The relationship between tropical cyclones at genesis and their maximum attained intensity. J. Climate, 30, 48974913, https://doi.org/10.1175/JCLI-D-16-0554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., L. Gimeno, and J. Amador, 2017: Role of moisture transport for Central American precipitation. Earth Syst. Dyn., 8, 147161, https://doi.org/10.5194/esd-8-147-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández–Alvarez, J. C., R. Sorí, A. Pérez–Alarcón, R. Nieto, and L. Gimeno, 2020: The role of tropical cyclones on the total precipitation in Cuba during the Hurricane season from 1980 to 2016. Atmosphere, 11, 1156, https://doi.org/10.3390/atmos11111156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, K., R. Kawamura, H. Hirata, T. Kawano, M. Kato, and T. Shinoda, 2017: A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res. Atmos., 122, 12 50212 521, https://doi.org/10.1002/2017JD027557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallego, D., R. García-Herrera, F. de Paula Gómez-Delgado, P. Ordoñez-Pérez, and P. Ribera, 2019: Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century. Earth Syst. Dyn., 10, 319331, https://doi.org/10.5194/esd-10-319-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2020: Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Sci. Rev., 201, 103070, https://doi.org/10.1016/j.earscirev.2019.103070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2021: The residence time of water vapour in the Atmosphere. Nat. Rev. Earth Environ., 2, 558569, https://doi.org/10.1038/s43017-021-00181-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., R. P. da Rocha, L. Gimeno, and A. Drumond, 2017: Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos., 122, 56365653, https://doi.org/10.1002/2016JD025764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1993: Predicting Atlantic seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 7386, https://doi.org/10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., N. P. Klingaman, M.-E. Demory, P. L. Vidale, A. G. Turner, and C. C. Stephan, 2018: The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability. Climate Dyn., 51, 41394156, https://doi.org/10.1007/s00382-017-4064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578, https://doi.org/10.1175/MWR3082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H. L., M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112129, https://doi.org/10.1175/JAS-D-13-053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jana, S., B. Rajagopalan, M. A. Alexander, and A. J. Ray, 2018: Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos., 123, 48504870, https://doi.org/10.1029/2017JD027652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, https://doi.org/10.1175/MWR3155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and L. B. Perry, 2009: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522534, https://doi.org/10.1002/joc.1894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kung, H., and S. X. Zhao, 2007: Diagnosis on energy budget and moisture supply of Matsa after landfall. Climatic Environ. Res., 12, 437452.

    • Search Google Scholar
    • Export Citation
  • Läderach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic Hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2007: What drives the seasonal onset and decay of the Western Hemisphere warm pool? J. Climate, 20, 21332146, https://doi.org/10.1175/JCLI4113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lélé, M. I., L. M. Leslie, and P. J. Lamb, 2015: Analysis of low-level atmospheric moisture transport associated with the West African monsoon. J. Climate, 28, 44144430, https://doi.org/10.1175/JCLI-D-14-00746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liberato, M. L. R., A. M. Ramos, R. M. Trigo, I. F. Trigo, A. M. Durán‐Quesada, R. Nieto, and L. Gimeno, 2012: Moisture sources and large‐scale dynamics associated with a flash flood event. Lagrangian Modeling of the Atmosphere, Geophys. Monogr., Vol. 200, Amer. Geophys. Union, 111126, https://doi.org/10.1029/2012GM001244.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, CA, University of California, 281297.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, A. V. Nefiodov, A. V. Chikunov, D. Sheil, A. Donato Nobre, and B. L. Li, 2017: Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmos. Res., 193, 216230, https://doi.org/10.1016/j.atmosres.2017.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global perspectives on tropical cyclones, WMO/TD-693, Rep. TCP-38, World Meteorological Organization, 63105.

    • Search Google Scholar
    • Export Citation
  • Meynadier, R., O. Bock, F. Guichard, A. Boone, P. Roucou, and J.-L. Redelsperger, 2010: West African monsoon water cycle: 1. A hybrid water budget dataset. J. Geophys. Res., 115, D19106, https://doi.org/10.1029/2010JD013917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., 2016: Recent Advances in Tropical Cyclogenesis. Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction, U.C. Mohanty and S. G. Gopalakrishnan, Eds., Springer, 561587, https://doi.org/10.5822/978-94-024-0896-6_22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morissette, L., and S. Chartier, 2013: The k-means clustering technique: General considerations and implementation in Mathematica. Tutor. Quant. Methods Psychol., 9, 1524, https://doi.org/10.20982/tqmp.09.1.p015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1993: Global climatology. Global Guide to Tropical Cyclone Forecasting, WMO/TD-560, Rep. TCP-31, World Meteorological Organization, 1.11.43.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan Ser. II, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazos, M., and L. Gimeno, 2017: Identification of moisture sources in the Atlantic Ocean for cyclogenesis processes. Proceedings of the First International Electronic Conference on the Hydrological Cycle, Sciforum Electronic Conference Series, Vol. 1, MDPI, 5 pp., https://doi.org/10.3390/CHyCle-2017-04862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., R. Sorí, J. C. Fernández-Alvarez, R. Nieto, and L. Gimeno, 2021a: Moisture sources for tropical cyclones genesis in the coast of West Africa through a Lagrangian approach. Environ. Sci. Proc., 4, 3, https://doi.org/10.3390/ecas2020-08126.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., R. Sorí, J. C. Fernández-Alvarez, R. Nieto, and L. Gimeno, 2021b: Comparative climatology of outer tropical cyclone size using radial wind profiles. Wea. Climate Extremes, 33, 100366, https://doi.org/10.1016/j.wace.2021.100366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., J. C. Fernández-Alvarez, R. Sorí, R. Nieto, and L. Gimeno, 2021c: The combined effects of SST and the North Atlantic subtropical high-pressure system on the Atlantic basin tropical cyclone interannual variability. Atmosphere, 12, 329, https://doi.org/10.3390/atmos12030329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pottapinjara, V., M. S. Girishkumar, R. Murtugudde, K. Ashok, and M. Ravichandran, 2019: On the relation between the boreal spring position of the Atlantic intertropical convergence zone and Atlantic zonal mode. J. Climate, 32, 47674781, https://doi.org/10.1175/JCLI-D-18-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., and O. Mesa, 1999: La corriente de chorro superficial del Oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia: Climatología y variabilidad durante las fases del ENSO. Rev. Acad. Colomb. Cien., 23, 517528.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., and O. Mesa, 2000: On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett., 27, 16751678, https://doi.org/10.1029/1999GL006091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062, https://doi.org/10.1175/JCLI-D-11-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., A. Diongue, A. Diedhiou, J. P. Ceron, M. Diop, J. F. Gueremy, and J. P. Lafore, 2002: Multiscale description of a Sahelian synoptic weather system representative of the West African monsoon. Quart. J. Roy. Meteor. Soc., 128, 12291257, https://doi.org/10.1256/003590002320373274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African monsoon multidisciplinary analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, https://doi.org/10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, J., J. A. Zhang, J. L. Vigh, P. Zhu, H. Liu, X. Wang, and J. B. Wadler, 2020: An observational study of the symmetric boundary layer structure and tropical cyclone intensity. Atmosphere, 11, 158, https://doi.org/10.3390/atmos11020158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., 2020: Beyond turnover time: Constraining the lifetime distribution of water vapor from simple and complex approaches. J. Atmos. Sci., 77, 413433, https://doi.org/10.1175/JAS-D-18-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2004: Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical Note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, https://doi.org/10.5194/acp-5-2461-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and O. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and D. B. Enfield, 2007: Impact of the Atlantic Warm Pool on the summer climate of the Western Hemisphere. J. Climate, 20, 50215040, https://doi.org/10.1175/JCLI4304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., H. H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. Ross, 2017: An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity. Machine Learning and Data Mining in Pattern Recognition, P. Perner, Eds., Lecture Notes in Computer Science, Vol. 10358, Springer, 291–305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Su, R. G. Fovell, T. J. Dunkerton, Z. Wang, and B. H. Kahn, 2015: Impact of environmental moisture on tropical cyclone intensification. Atmos. Chem. Phys., 15, 14 04114 053, https://doi.org/10.5194/acp-15-14041-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., T. J. Osborn, and A. J. Matthews, 2017: Moisture transport by Atlantic tropical cyclones onto the North American continent. Climate Dyn., 48, 31613182, https://doi.org/10.1007/s00382-016-3257-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M., S. A. Braun, and D. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 38093828, https://doi.org/10.1175/MWR-D-10-05090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, R., Y. Miyamoto, H. Tomita, and Y. Kajikawa, 2017: The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU 2010. J. Meteor. Soc. Japan, 95, 3547, https://doi.org/10.2151/jmsj.2017-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, N., A. Manda, X. Guo, K Kikuchi, T Nasuno, M. Nakano, Y. Zhang, and B. Wang, 2021: A Lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: Importance of the moistening over the subtropical regions. Geophys. Res. Lett, 48, e2020GL091441, https://doi.org/10.1029/2020GL091441.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 402 51 0
Full Text Views 452 308 41
PDF Downloads 377 239 31