Improving the ESA CCI Daily Soil Moisture Time Series with Physically Based Land Surface Model Datasets Using a Fourier Time-Filtering Method

Eunkyo Seo aCenter for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Eunkyo Seo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3517-3054
and
Paul A. Dirmeyer aCenter for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Models have historically been the source of global soil moisture (SM) analyses and estimates of land–atmosphere coupling, even though they are usually calibrated and validated only locally. Satellite-based analyses have grown in fidelity and duration, offering an independent observationally based alternative. However, satellite-retrieved SM time series include random and periodic errors that degrade estimates of land–atmosphere coupling, including correlations with other variables. This study proposes a mathematical approach to adjust daily time series of the European Space Agency (ESA) Climate Change Initiative (CCI) satellite SM product using information from physically based land surface model (LSM) datasets using a Fourier transform time-filtering method to match the temporal power spectra locally to the LSMs, which tend to agree well with in situ observations. When the original and timely adjusted SM products are evaluated against ground-based SM measurements over the conterminous United States, Europe, and Australia, results show the adjusted SM has significantly improved subseasonal variability. The skill of the adjusted SM is increased in temporal correlation by ∼0.05 over all analysis domains without introducing spurious regional patterns, affirming the stochastic nature of noise in satellite estimates, and skill improvement is found for nearly all land cover classes, especially savannas and grassland. Autocorrelation-based soil moisture memory (SMM) and the derived random component of soil moisture error (SME) are used to investigate the improvement of SM features. The time filtering reduces the random noise from the satellite-based SM product that is not explainable by physically based SM dynamics; SME is usually diminished and the increased SMM is generally statistically significant.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eunkyo Seo, eseo8@gmu.edu

Abstract

Models have historically been the source of global soil moisture (SM) analyses and estimates of land–atmosphere coupling, even though they are usually calibrated and validated only locally. Satellite-based analyses have grown in fidelity and duration, offering an independent observationally based alternative. However, satellite-retrieved SM time series include random and periodic errors that degrade estimates of land–atmosphere coupling, including correlations with other variables. This study proposes a mathematical approach to adjust daily time series of the European Space Agency (ESA) Climate Change Initiative (CCI) satellite SM product using information from physically based land surface model (LSM) datasets using a Fourier transform time-filtering method to match the temporal power spectra locally to the LSMs, which tend to agree well with in situ observations. When the original and timely adjusted SM products are evaluated against ground-based SM measurements over the conterminous United States, Europe, and Australia, results show the adjusted SM has significantly improved subseasonal variability. The skill of the adjusted SM is increased in temporal correlation by ∼0.05 over all analysis domains without introducing spurious regional patterns, affirming the stochastic nature of noise in satellite estimates, and skill improvement is found for nearly all land cover classes, especially savannas and grassland. Autocorrelation-based soil moisture memory (SMM) and the derived random component of soil moisture error (SME) are used to investigate the improvement of SM features. The time filtering reduces the random noise from the satellite-based SM product that is not explainable by physically based SM dynamics; SME is usually diminished and the increased SMM is generally statistically significant.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eunkyo Seo, eseo8@gmu.edu

Supplementary Materials

    • Supplemental Materials (PDF 674 KB)
Save
  • Albergel, C., and Coauthors, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, https://doi.org/10.5194/hess-12-1323-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Yaari, A., S. Dayau, C. Chipeaux, C. Aluome, A. Kruszewski, D. Loustau, and J.-P. Wigneron, 2018: The AQUI soil moisture network for satellite microwave remote sensing validation in south-western France. Remote Sens., 10, 1839, https://doi.org/10.3390/rs10111839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bircher, S., N. Skou, K. Jensen, J. P. Walker, and L. Rasmussen, 2012: A soil moisture and temperature network for SMOS validation in western Denmark. Hydrol. Earth Syst. Sci., 16, 14451463, https://doi.org/10.5194/hess-16-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J.-C., N. Fritz, F. Froissard, D. Suquia, A. Petitpa, and B. Piguet, 2007: In situ soil moisture observations for the CAL/VAL of SMOS: The SMOSMANIA network. 2007 IEEE Int. Geoscience and Remote Sensing Symp., Denver, CO, Institute of Electrical and Electronics Engineers, 11961199, https://doi.org/10.1109/IGARSS.2007.4423019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, https://doi.org/10.1175/JHM-D-15-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 11113 127, https://doi.org/10.1029/2018JD029103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., G. Balsamo, E. M. Blyth, R. Morrison, and H. M. Cooper, 2021: Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv., 2, e2020AV000283, https://doi.org/10.1029/2020AV000283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. De Jeu, and V. Naeimi, 2010: Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, https://doi.org/10.5194/hess-14-2605-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380395, https://doi.org/10.1016/j.rse.2014.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, G. De Lannoy, and Q. Liu, 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, https://doi.org/10.1029/2011GL050655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, R. de Jeu, V. Naeimi, R. Parinussa, and W. Wagner, 2013: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ., 137, 288298, https://doi.org/10.1016/j.rse.2013.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, https://doi.org/10.1016/j.rse.2009.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Zamora, Á., N. Sánchez, M. Pablos, and J. Martínez-Fernández, 2019: CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ., 225, 469482, https://doi.org/10.1016/j.rse.2018.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., C.-H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner, 2016: Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200211, https://doi.org/10.1016/j.jag.2015.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., W. A. Dorigo, W. Crow, and W. Wagner, 2017: Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 55, 67806792, https://doi.org/10.1109/TGRS.2017.2734070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., and Coauthors, 2020: Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sens. Environ., 244, 111806, https://doi.org/10.1016/j.rse.2020.111806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J. Geophys. Res., 111, D22S02, https://doi.org/10.1029/2006JD007233.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, Z.-Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, https://doi.org/10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, X. Gao, and M. Zhao, 2007: Improving the quality of simulated soil moisture with a multi‐model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731747, https://doi.org/10.1002/qj.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Coauthors, 2010: Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 42564272, https://doi.org/10.1109/TGRS.2010.2051035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasinski, M. F., and Coauthors, 2019: NCA-LDAS: Overview and analysis of hydrologic trends for the national climate assessment. J. Hydrometeor., 20, 15951617, https://doi.org/10.1175/JHM-D-17-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, K. H., and J. C. Refsgaard, 2018: HOBE: The Danish hydrological observatory. Vadose Zone J., 17(1), 124, https://doi.org/10.2136/vzj2018.03.0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, https://doi.org/10.1175/JHM-387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2019: NCA-LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation system for the National Climate Assessment. J. Hydrometeor., 20, 15711593, https://doi.org/10.1175/JHM-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., E. E. Small, E. D. Gutmann, A. L. Bilich, J. J. Braun, and V. U. Zavorotny, 2008: Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett., 35, L24405, https://doi.org/10.1029/2008GL036013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, F., W. T. Crow, H. Shen, C.-H. Su, T. R. Holmes, R. M. Parinussa, and G. Wang, 2018: Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sens. Environ., 205, 8599, https://doi.org/10.1016/j.rse.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., and A. Belward, 1997: The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J. Remote Sens., 18, 32893295, https://doi.org/10.1080/014311697217099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., C.-H. Su, L. Brocca, Y.-F. Sang, L. Ciabatta, D. Ryu, and W. Wagner, 2017: Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sens. Environ., 198, 1729, https://doi.org/10.1016/j.rse.2017.05.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preimesberger, W., T. Scanlon, C.-H. Su, A. Gruber, and W. Dorigo, 2021: Homogenization of structural breaks in the global ESA CCI soil moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens., 59, 28452862, https://doi.org/10.1109/TGRS.2020.3012896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, https://doi.org/10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., S. Q. Zhang, Q. Liu, C. S. Draper, J. Kolassa, and R. Todling, 2021: Assimilation of SMAP brightness temperature observations in the GEOS land–atmosphere data assimilation system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 10 62810 643, https://doi.org/10.1109/JSTARS.2021.3118595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, C. A. Schlosser, N. A. Speranskaya, and Y. Xue, 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8, 1535, https://doi.org/10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 16951709, https://doi.org/10.1007/s00382-018-4221-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., M.-I. Lee, S. D. Schubert, R. D. Koster, and H.-S. Kang, 2020: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett., 15, 114018, https://doi.org/10.1088/1748-9326/abbbae.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., M.-I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ., 253, 112222, https://doi.org/10.1016/j.rse.2020.112222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and Coauthors, 2012: The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res., 48, W07701, https://doi.org/10.1029/2012WR011976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-H., and D. Ryu, 2015: Multi-scale analysis of bias correction of soil moisture. Hydrol. Earth Syst. Sci., 19, 1731, https://doi.org/10.5194/hess-19-17-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-H., D. Ryu, A. W. Western, and W. Wagner, 2013: De‐noising of passive and active microwave satellite soil moisture time series. Geophys. Res. Lett., 40, 36243630, https://doi.org/10.1002/grl.50695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-H., J. Zhang, A. Gruber, R. Parinussa, D. Ryu, W. T. Crow, and W. Wagner, 2016: Error decomposition of nine passive and active microwave satellite soil moisture data sets over Australia. Remote Sens. Environ., 182, 128140, https://doi.org/10.1016/j.rse.2016.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and I. Yeserkepova, 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679, https://doi.org/10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., A. Robock, N. A. Speranskaya, and C. A. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101, 71637174, https://doi.org/10.1029/95JD02753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zacharias, S., and Coauthors, 2011: A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10, 955973, https://doi.org/10.2136/vzj2010.0139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem, 2012: COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci., 16, 40794099, https://doi.org/10.5194/hess-16-4079-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 646 84 0
Full Text Views 476 355 34
PDF Downloads 386 256 22