• Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, https://doi.org/10.1002/qj.803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., and Coauthors, 2015: The influence of surface and precipitation characteristics on TRMM microwave imager rainfall retrieval uncertainty. J. Hydrometeor., 16, 15961614, https://doi.org/10.1175/JHM-D-14-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation and uncertainty estimation of NOAA/NSSL next-generation national mosaic quantitative precipitation estimation product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, https://doi.org/10.1175/JHM-D-12-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, N., J. Tan, and L. Oreopoulos, 2021: Classifying planetary cloudiness with an updated set of MODIS cloud regimes. J. Appl. Meteor. Climatol., 60, 981997, https://doi.org/10.1175/JAMC-D-20-0247.1.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. L’Ecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698, https://doi.org/10.1175/2010JCLI3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P.-E. Kirstetter, Y. E. Hong, N. J. Carr, J. J. Gourley, W. Petersen, and Y. Zheng, 2017: Understanding overland multisensor satellite precipitation error in TMPA-RT products. J. Hydrometeor., 18, 285306, https://doi.org/10.1175/JHM-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, L., and C. Liu, 2018: A multiyear analysis of global precipitation combining CloudSat and GPM precipitation retrievals. J. Hydrometeor., 19, 19351952, https://doi.org/10.1175/JHM-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., C. D. Kummerow, D. A. Marks, and W. Berg, 2017: A regime-based evaluation of TRMM oceanic precipitation biases. J. Atmos. Oceanic Technol., 34, 26132635, https://doi.org/10.1175/JTECH-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 6, 34 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 343353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., 2020: Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) mission’s core observatory. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 183192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical Western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical Western Pacific cloud regimes. J. Climate, 21, 43484364, https://doi.org/10.1175/2008JCLI2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, D. Lee, N. Cho, and J. Tan, 2018: Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean. Atmos. Chem. Phys., 18, 30653082, https://doi.org/10.5194/acp-18-3065-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, D. Lee, J. Tan, and N. Cho, 2021: Cloud-precipitation hybrid regimes and their projection onto IMERG precipitation data. J. Appl. Meteor. Climatol., 60, 733748, https://doi.org/10.1175/JAMC-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the version 05 level 2 precipitation products from the GPM core observatory and constellation satellite sensors: V05 L2 GPM precipitation validation. Quart. J. Roy. Meteor. Soc., 144, 313328, https://doi.org/10.1002/qj.3175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based national mosaic QPE. J. Hydrometeor., 13, 12851300, https://doi.org/10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, Q. Cao, M. Schwaller, and W. Petersen, 2014: Research framework to bridge from the global precipitation measurement mission core satellite to the constellation sensors using ground-radar-based national mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 6179, https://doi.org/10.1002/9781118872086.ch4.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, M. Schwaller, W. Petersen, and Q. Cao, 2015: Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: evaluating the TRMM 2A25 product: Impact of sub-pixel rainfall variability on TRMM 2A25. Quart. J. Roy. Meteor. Soc., 141, 953966, https://doi.org/10.1002/qj.2416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., W. A. Petersen, C. D. Kummerow, and D. B. Wolff, 2020: Integrated multi-satellite evaluation for the global precipitation measurement: Impact of precipitation types on spaceborne precipitation estimation. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 69, Springer, 583608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., 2017: GPM GMI (GPROF) radiometer precipitation profiling L2A 1.5 hours 13 km V05. GES DISC, accessed 27 June 2019, https://disc.gsfc.nasa.gov/datacollection/GPM_2AGPROFGPMGMI_05.html.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave Sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., M. D. Lebsock, L. Oreopoulos, and N. Cho, 2016: Interregional differences in MODIS-derived cloud regimes. J. Geophys. Res. Atmos., 121, 11 64811 665, https://doi.org/10.1002/2016JD025193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., 2021: MODIS CR equal area 3-hour. GES DISC, accessed 12 July 2021, https://doi.org/10.5067/MEASURES/MODISCR/EQAR3H/DATA301.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res. Atmos., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., C. D. Kummerow, D. L. Randel, J. R. Pierce, and J. K. Kodros, 2018: Improving the quality of heavy precipitation estimates from satellite passive microwave rainfall retrievals. J. Hydrometeor., 19, 6985, https://doi.org/10.1175/JHM-D-17-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 141152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, https://doi.org/10.1175/2006JAS2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and L. Oreopoulos, 2019: Subgrid precipitation properties of mesoscale atmospheric systems represented by MODIS cloud regimes. J. Climate, 32, 17971812, https://doi.org/10.1175/JCLI-D-18-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, and T. P. Lane, 2013: On the identification of the large-scale properties of tropical convection using cloud regimes. J. Climate, 26, 66186632, https://doi.org/10.1175/JCLI-D-12-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018: Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett., 46, 13 58413 592, https://doi.org/10.1029/2019GL085395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. B. Rossow, C. Jakob, J. Remillard, D. Tropf, and Y. Zhang, 2021: Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data. J. Climate, 34, 73117324, https://doi.org/10.1175/JCLI-D-21-0076.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, https://doi.org/10.1175/2008JAMC1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099, https://doi.org/10.1175/2008JAMC2127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • You, Y., V. Petkovic, J. Tan, R. Kroodsma, W. Berg, C. Kidd, and C. Peters-Lidard, 2020: Evaluation of V05 precipitation estimates from GPM constellation radiometers using KuPR as the reference. J. Hydrometeor., 21, 705728, https://doi.org/10.1175/JHM-D-19-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, K. Howard, C. Langston, and B. Kaney, 2011: Radar Quality Index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 200 11
Full Text Views 96 96 18
PDF Downloads 126 126 28

Evaluation of GPROF V05 Precipitation Retrievals under Different Cloud Regimes

View More View Less
  • 1 aUniversity of Maryland, Baltimore County, Baltimore, Maryland
  • | 2 bEarth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 4 dSchool of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
  • | 5 eNOAA/Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

Significance Statement

To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Jackson Tan, jackson.tan@nasa.gov

Abstract

Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

Significance Statement

To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Jackson Tan, jackson.tan@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 467 KB)
Save