• Abadi, M., and Coauthors, 2015: TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 19 pp., https://arxiv.org/abs/1603.04467.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, https://doi.org/10.1175/JCLI-D-11-00408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2011: Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Comput. Geosci., 37, 12771284, https://doi.org/10.1016/j.cageo.2010.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cornelisse, D., 2018: An intuitive guide to Convolutional Neural Networks. FreeCodeCamp, accessed 3 April 2020, https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys . Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Dertat, A., 2017: Applied deep learning – Part 4: Convolutional Neural Networks. TowardsDataScience, accessed 3 April 2020, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2.

    • Search Google Scholar
    • Export Citation
  • Dong, C., C. C. Loy, K. He, and X. Tang, 2014: Learning a deep convolutional network for image super-resolution. Computer Vision – ECCV 2014, D. Fleet et al., Eds., Springer, 184199, https://doi.org/10.1007/978-3-319-10593-2_13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Fukushima, K., 1980: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 36, 193202, https://doi.org/10.1007/BF00344251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, S., 2010: SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J. Geophys. Res., 115, D22102, https://doi.org/10.1029/2009JD013548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT Press, http://www.deeplearningbook.org.

  • Hall, D. K., G. A. Riggs, and V. V. Salomonson, 1995: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ., 54, 127140, https://doi.org/10.1016/0034-4257(95)00137-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DeGirolamo, K. J. Bayr, and J. M. Jin, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., V. V. Salomonson, and G. A. Riggs, 2006a: MODIS/Terra Snow Cover Daily L3 Global 0.05Deg CMG, version 5. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 20 February 2014, https://doi.org/10.5067/EI5HGLM2NNHN.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., V. V. Salomonson, and G. A. Riggs, 2006b: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, version 5. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 15 July 2016, https://doi.org/10.5067/63NQASRDPDB0.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, J. L. Foster, and S. V. Kumar, 2010: Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ., 114, 496503, https://doi.org/10.1016/j.rse.2009.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, N. E. DiGirolamo, and M. O. Román, 2019: Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci., 23, 52275241, https://doi.org/10.5194/hess-23-5227-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashmi, M. Z., A. Y. Shamseldin, and B. W. Melville, 2011: Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environ. Res. Risk Assess., 25, 475484, https://doi.org/10.1007/s00477-010-0416-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hessami, M., P. Gachon, T. B. M. J. Ouarda, and A. St-Hilaire, 2008: Automated regression-based statistical downscaling tool. Environ. Modell. Software, 23, 813834, https://doi.org/10.1016/j.envsoft.2007.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpatne, A., I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, 2018: Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng., 31, 15441554, https://doi.org/10.1109/TKDE.2018.2861006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingma, D., and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv, 15 pp., https://arxiv.org/abs/1412.6980.

  • Klein, A. G., and J. Stroeve, 2002: Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol., 34, 4552, https://doi.org/10.3189/172756402781817662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, A. G., D. K. Hall, and G. A. Riggs, 1998: Improving snow-cover mapping in forests through the use of a canopy reflectance model. Hydrol. Processes, 12, 17231744, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutsson, H., and C.-F. Westin, 1993: Normalized and differential convolution. Proc. IEEEConference on Computer Vision and Pattern Recognition, New York, NY, IEEE, 515523, https://doi.org/10.1109/CVPR.1993.341081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system – An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, 2018: Image inpainting for irregular holes using partial convolutions. Computer Vision – ECCV 2018, V. Ferrari et al., Eds., Springer, 89105, https://doi.org/10.1007/978-3-030-01252-6_6.

    • Search Google Scholar
    • Export Citation
  • Mannshardt-Shamseldin, E. C., R. L. Smith, S. R. Sain, L. O. Mearns, and D. Cooley, 2010: Downscaling extremes: A comparison of extreme value distributions in point-source and gridded precipitation data. Ann. Appl. Stat., 4, 484502, https://doi.org/10.1214/09-AOAS287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, S. V. Kumar, and Y. Xia, 2016: Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. J. Hydrometeor., 17, 745759, https://doi.org/10.1175/JHM-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innovations Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riggs, G. A., D. K. Hall, and V. V. Salomonson, 1994: A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. Proc. 1994 Int. Geoscience and Remote Sensing Symp., Pasadena, CA, IEEE, 19421944, https://doi.org/10.1109/IGARSS.1994.399618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riggs, G. A., D. K. Hall, and V. V. Salomonson, 2006: MODIS snow products user guide to collection 5. NASA Doc., 80 pp., https://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf.

    • Search Google Scholar
    • Export Citation
  • Saha, S., 2018: A comprehensive guide to convolutional neural networks – The ELI5 way. TowardsDataScience, accessed 3 April 2020, https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., and I. Appel, 2004: Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ., 89, 351360, https://doi.org/10.1016/j.rse.2003.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., and I. Appel, 2006: Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens., 44, 17471756, https://doi.org/10.1109/TGRS.2006.876029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenherr, A. A., 1995: A Natural History of California. University of California Press, 56 pp.

  • Vandal, T., E. Kodra, S. Ganguly, A. Michaelis, R. Nemani, and A. R. Ganguly, 2017: DeepSD: Generating high resolution climate change projections through single image super-resolution. KDD ′17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, 16631672, https://doi.org/10.1145/3097983.3098004.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2006: Collection-5 MODIS land surface temperature products users’ guide. University of California, Santa Barbara, 30 pp.

  • Wan, Z., and J. Dozier, 1996: A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34, 892905, https://doi.org/10.1109/36.508406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikipedia, 2020: Droughts in California. Wikipedia, accessed 21 October 2020, https://en.wikipedia.org/wiki/Droughts_in_California.

  • Wikipedia, 2021: Sierra Nevada. Wikipedia, accessed 27 July 2021, https://en.wikipedia.org/wiki/Sierra_Nevada.

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/b:clim.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, https://doi.org/10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 25 25 25
Full Text Views 6 6 6
PDF Downloads 3 3 3

A Novel Machine Learning–Based Gap-Filling of Fine-Resolution Remotely Sensed Snow Cover Fraction Data by Combining Downscaling and Regression

View More View Less
  • 1 aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 bHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Satellite-based remotely sensed observations of snow cover fraction (SCF) can have data gaps in spatially distributed coverage from sensor and orbital limitations. We mitigate these limitations in the example fine-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data by gap-filling using auxiliary 1-km datasets that either aid in downscaling from coarser-resolution (5 km) MODIS SCF wherever not fully covered by clouds, or else by themselves via regression wherever fully cloud covered. This study’s prototype predicts a 1-km version of the 500-m MOD10A1 SCF target. Due to noncollocatedness of spatial gaps even across input and auxiliary datasets, we consider a recent gap-agnostic advancement of partial convolution in computer vision for both training and predictive gap-filling. Partial convolution accommodates spatially consistent gaps across the input images, effectively implementing a two-dimensional masking. To overcome reduced usable data from noncollocated spatial gaps across inputs, we innovate a fully generalized three-dimensional masking in this partial convolution. This enables a valid output value at a pixel even if only a single valid input variable and its value exist in the neighborhood covered by the convolutional filter zone centered around that pixel. Thus, our gap-agnostic technique can use significantly more examples for training (∼67%) and prediction (∼100%), instead of only less than 10% for the previous partial convolution. We train an example simple three-layer legacy super-resolution convolutional neural network (SRCNN) to obtain downscaling and regression component performances that are better than baseline values of either climatology or MOD10C1 SCF as relevant. Our generalized partial convolution can enable multiple Earth science applications like downscaling, regression, classification, and segmentation that were hindered by data gaps.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the The 1st NOAA Workshop on Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction Special Collection.

Corresponding author: Soni Yatheendradas, soni.yatheendradas@nasa.gov

Abstract

Satellite-based remotely sensed observations of snow cover fraction (SCF) can have data gaps in spatially distributed coverage from sensor and orbital limitations. We mitigate these limitations in the example fine-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data by gap-filling using auxiliary 1-km datasets that either aid in downscaling from coarser-resolution (5 km) MODIS SCF wherever not fully covered by clouds, or else by themselves via regression wherever fully cloud covered. This study’s prototype predicts a 1-km version of the 500-m MOD10A1 SCF target. Due to noncollocatedness of spatial gaps even across input and auxiliary datasets, we consider a recent gap-agnostic advancement of partial convolution in computer vision for both training and predictive gap-filling. Partial convolution accommodates spatially consistent gaps across the input images, effectively implementing a two-dimensional masking. To overcome reduced usable data from noncollocated spatial gaps across inputs, we innovate a fully generalized three-dimensional masking in this partial convolution. This enables a valid output value at a pixel even if only a single valid input variable and its value exist in the neighborhood covered by the convolutional filter zone centered around that pixel. Thus, our gap-agnostic technique can use significantly more examples for training (∼67%) and prediction (∼100%), instead of only less than 10% for the previous partial convolution. We train an example simple three-layer legacy super-resolution convolutional neural network (SRCNN) to obtain downscaling and regression component performances that are better than baseline values of either climatology or MOD10C1 SCF as relevant. Our generalized partial convolution can enable multiple Earth science applications like downscaling, regression, classification, and segmentation that were hindered by data gaps.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the The 1st NOAA Workshop on Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction Special Collection.

Corresponding author: Soni Yatheendradas, soni.yatheendradas@nasa.gov
Save