• Aleshina, M. A., E. A. Cherenkova, V. A. Semenov, D. D. Bokuchava, T. A. Matveeva, and D. V. Turkov, 2019: Observed and expected changes in extreme precipitation frequency in Russia in the 20th–21st centuries. Proc. SPIE, 11208, 1120886, https://doi.org/10.1117/12.2540921.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Ao, X., Q. Zhai, Y. Cui, C. Zhao, T. Wang, X. Zhou, and Y. Hou, 2020: Prediction of changes in mean and extreme climate events in Northeast China under different warming scenarios (in Chinese). J. Meteor. Environ., 36, 4051.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batima, P., L. Natsagdorj, P. Gombluudev, and B. Erdenetsetseg, 2005: Observed climate change in Mongolia. AIACC Working Paper 12, Assessments of Impacts and Adaptations to Climate Change, 26 pp., http://www.start.org/Projects/AIACC_Project/working_papers/Working%20Papers/AIACC_WP_No013.pdf.

    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climatic impact. Quart. J. Roy. Meteor. Soc., 133, 21172131, https://doi.org/10.1002/qj.173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bulygina, O. N., V. N. Razuvaev, N. N. Korshunova, and P. Y. Groisman, 2007: Climate variations and changes in extreme climate events in Russia. Environ. Res. Lett., 2, 045020, https://doi.org/10.1088/1748-9326/2/4/045020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, F., T. Gao, L. Dan, Z. Ma, X. Yang, and F. Yang, 2018: Contribution of large-scale circulation anomalies to variability of summer precipitation extremes in northeast China. Atmos. Sci. Lett., 19, e867, https://doi.org/10.1002/asl.867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., Z. Guan, M. Jiao, and P. Hu, 2019: Anomalous circulation patterns in association with summertime regional daily precipitation extremes over northeast China. Adv. Meteor., 2019, 5085897, https://doi.org/10.1155/2019/5085897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, W. R. Huang, and M. C. Yen, 2004: Variation of the East Asian summer monsoon rainfall. J. Climate, 17, 744762, https://doi.org/10.1175/1520-0442(2004)017<0744:VOTEAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chernokulsky, A., F. Kozlov, O. Zolina, O. Bulygina, I. Mokhov, and V. A. Semenov, 2019: Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environ. Res. Lett., 14, 045001, https://doi.org/10.1088/1748-9326/aafb82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, N., M. I. Lee, D. H. Cha, and Y. K. Kim, 2020: Decadal changes in the interannual variability of heat waves in East Asia caused by atmospheric teleconnection changes. J. Climate, 33, 15051522, https://doi.org/10.1175/JCLI-D-19-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., and Coauthors, 2020: Rainfall Estimates on a Gridded Network (REGEN)–a global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci., 24, 919943, https://doi.org/10.5194/hess-24-919-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., M. G. Donat, and L. V. Alexander, 2021: Changes in observed daily precipitation over global land areas since 1950. J. Climate, 34, 319, https://doi.org/10.1175/JCLI-D-19-0965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov-Danilyan, V. I., A. N. Gelfan, Y. G. Motovilov, and A. S. Kalugin, 2014: Disastrous flood of 2013 in the Amur basin: Genesis, recurrence assessment, simulation results. Water Resour., 41, 115125, https://doi.org/10.1134/S0097807814020055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degefie, D. T., E. Fleischer, O. Klemm, A. V. Soromotin, O. V. Soromotina, A. V. Tolstikov, and N. V. Abramov, 2014: Climate extremes in South Western Siberia: Past and future. Stochastic Environ. Res. Risk Assess., 28, 21612173, https://doi.org/10.1007/s00477-014-0872-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Mather, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, H., Z. Wu, S. Zong, X. Meng, and L. Wang, 2013: Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis. J. Geophys. Res. Atmos., 118, 61656174, https://doi.org/10.1002/jgrd.50487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, N., T. Kadota, J. Matsumoto, B. Ailikun, and T. Yasunari, 2006: Climatology and trends in summer precipitation characteristics in Mongolia for the period 1960–98. J. Meteor. Soc. Japan, 84, 543551, https://doi.org/10.2151/jmsj.84.543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. M. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujinami, H., T. Yasunari, and T. Watanabe, 2016: Trend and interannual variation in summer precipitation in eastern Siberia in recent decades. Int. J. Climatol., 36, 355368, https://doi.org/10.1002/joc.4352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., H. Igarashi, K. Masuda, and T. Yasunari, 2003: Interannual variability of summer water balance components in three major river basins of northern Eurasia. J. Hydrometeor., 4, 283296, https://doi.org/10.1175/1525-7541(2003)4<283:IVOSWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, T., J. Y. Yu, and H. Paek, 2017: Impacts of four Northern-Hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Climatol., 129, 815831, https://doi.org/10.1007/s00704-016-1801-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 2013: Climate changes in Siberia. Regional Environmental Changes in Siberia and Their Global Consequences, P. Ya. Groisman and G. Gutman, Eds., Springer, 57109, https://doi.org/10.1007/978-94-007-4569-8_3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., C. Li, W. Li, W. Zhou, and J. C. L. Chan, 2009: Interdecadal unstationary relationship between NAO and East China’s summer precipitation patterns. Geophys. Res. Lett., 36, L13702, https://doi.org/10.1029/2009GL038843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., H. Chen, and H. Wang, 2015: Recent changes in summer precipitation in Northeast China and the background circulation. Int. J. Climatol., 35, 42104219, https://doi.org/10.1002/joc.4280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., S. He, H. Wang, and X. Hao, 2019: Variation in principal modes of midsummer precipitation over northeast China and its associated atmospheric circulation. Adv. Atmos. Sci., 36, 5564, https://doi.org/10.1007/s00376-018-8072-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, T. Furevik, H. Wang, and F. Li, 2018: Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 5264, https://doi.org/10.1007/s00376-017-7029-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., R. Lu, and D. Wang, 2010: Seasonal climatology of cut-off lows and associated precipitation patterns over northeast China. Meteor. Atmos. Phys., 106, 3748, https://doi.org/10.1007/s00703-009-0049-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, P., J. Cheng, G. Feng, M. M. A. Dogar, and Z. Gong, 2020: The mechanism of EAP-EU combined impact on summer rainfall over North Asia. Theor. Appl. Climatol., 142, 117128, https://doi.org/10.1007/s00704-020-03295-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 136, https://doi.org/10.1029/134GM01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2006: Interannual change in summertime precipitation over northeast Asia. Geophys. Res. Lett., 33, L16703, https://doi.org/10.1029/2006GL027119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, https://doi.org/10.1007/BF02289233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., N. Nicholls, and A. Ghazi, 1999: Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Weather and Climate Extremes, T. Karl, N. Nicholls, and A. Ghazi, Eds., Springer, 37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, https://doi.org/10.1007/s10584-015-1434-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner, 2020: Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Climate, 34, 34413460, https://doi.org/10.1175/JCLI-D-19-1013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., S. He, Y. Gao, H. Chen, and H. Wang, 2020: North Atlantic modulation of interdecadal variations in hot drought events over northeastern China. J. Climate, 33, 43154332, https://doi.org/10.1175/JCLI-D-19-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2014: Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci., 31, 13661376, https://doi.org/10.1007/s00376-014-3171-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology Statistical Forecast Project Tech. Rep. 1, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., and J. Sun, 2021: Synoptic-scale circulation precursors of extreme precipitation events over Southwest China during the rainy season. J. Geophys. Res. Atmos., 126, e2021JD035134, https://doi.org/10.1029/2021JD035134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., S. Song, W. Sun, X. Mu, S. Wang, J. Li, and Y. Li, 2015: Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res., 157, 137152, https://doi.org/10.1016/j.atmosres.2015.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and S. Zhao, 2015: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, https://doi.org/10.1038/srep16853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2012: The contribution of extreme precipitation to the total precipitation in China. Atmos. Ocean. Sci. Lett., 5, 499503, https://doi.org/10.1080/16742834.2012.11447046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117, D08110, https://doi.org/10.1029/2012JD017482.

    • Search Google Scholar
    • Export Citation
  • Sun, L., B. Shen, B. Sui, and B. Huang, 2017: The influences of East Asian Monsoon on summer precipitation in northeast China. Climate Dyn., 48, 16471659, https://doi.org/10.1007/s00382-016-3165-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., X. Zhang, F. Zwiers, S. Westra, and L. V. Alexander, 2021: A global, continental, and regional analysis of changes in extreme precipitation. J. Climate, 34, 243258, https://doi.org/10.1175/JCLI-D-19-0892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., A. Huang, P. Wu, D. Huang, D. Xue, and Y. Wu, 2021: Drivers of summer extreme precipitation events over East China. Geophys. Res. Lett, 48, e2021GL093670, https://doi.org/10.1029/2021GL093670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and J. I. López-Moreno, 2008: Nonstationary influence of the North Atlantic Oscillation on European precipitation. J. Geophys. Res., 113, D20120, https://doi.org/10.1029/2008JD010382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilfand, R. M., I. A. Kulikova, and M. E. Makarova, 2020: Weather and climate features of the Northern Hemisphere in 2019 in the context of long-period variability. IOP Conf. Ser.: Earth Environ. Sci., 606, 012067, https://doi.org/10.1088/1755-1315/606/1/012067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2013: Changes in extreme precipitation over northeast China, 1960–2011. Quat. Int., 298, 177186, https://doi.org/10.1016/j.quaint.2013.01.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2002: The instability of the East Asian summer monsoon–ENSO relations. Adv. Atmos. Sci., 19, 111, https://doi.org/10.1007/s00376-002-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Z. Wu, H. He, F. Wang, H. Du, and S. Zong, 2017: Changes in summer extreme precipitation in northeast Asia and their relationships with the East Asian summer monsoon during 1961–2009. Int. J. Climatol., 37, 2535, https://doi.org/10.1002/joc.4683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and B. Tan, 2020: Two types of the Scandinavian pattern: Their formation mechanisms and climate impacts. J. Climate, 33, 26452661, https://doi.org/10.1175/JCLI-D-19-0447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. R. Dmowska, D. Hartmann, and H. T. Rossby, Eds., Academic Press, 676 pp.

    • Search Google Scholar
    • Export Citation
  • WMO, 2014: WMO statement on the status of the global climate in 2013. WMO-1130, 21 pp., https://library.wmo.int/doc_num.php?explnum_id=7862.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, and W. Shi, 2010: CPC global unified gauge-based analysis of daily precipitation, 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A, https://ams.confex.com/ams/90annual/techprogram/paper_163676.htm.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Du, J. Tang, and Y. Wang, 2011: Variations of temperature and precipitation extremes in recent two decades over China. Atmos. Res., 101, 143154, https://doi.org/10.1016/j.atmosres.2011.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., Z. Xu, W. Liu, and L. Liu, 2017: Spatiotemporal characteristics of extreme precipitation at multiple timescales over Northeast China during 1961–2014. J. Water Climate Change, 8, 535556, https://doi.org/10.2166/wcc.2017.157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, A. Behrangi, S. Wong, B. H. Lambrigtsen, C. Y. Wang, J. Cohen, and B. L. Gamelin, 2016: Increasing daily precipitation intensity associated with warmer air temperatures over Northern Eurasia. J. Climate, 29, 623636, https://doi.org/10.1175/JCLI-D-14-00771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Z., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and Central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon a diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., and J. Sun, 2007: Study on cut-off low-pressure systems with floods over Northeast Asia. Meteor. Atmos. Phys., 96, 159180, https://doi.org/10.1007/s00703-006-0226-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziese, M., A. Rauthe-Schöch, A. Becker, P. Finger, E. Rustemeier, and U. Schneider, 2020: GPCC Full Data Daily Version 2020 at 1.0°: Daily land-surface precipitation from rain-gauges built on GTS-based and historic data. DWD, accessed 5 June 2021, https://doi.org/10.5676/DWD_GPCC/FD_D_V2020_100.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 154 62 21
Full Text Views 142 88 32
PDF Downloads 144 89 36

Interannual Variations in Summer Extreme Precipitation Frequency over Northern Asia and Related Atmospheric Circulation Patterns

View More View Less
  • 1 aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 cUniversity of Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

This study investigates the spatial–temporal variations in summer extreme precipitation event (EPE) frequency over northern Asia and related atmospheric circulations. The division analysis indicates that three subregions of western Siberia (WS), eastern Siberia (ES), and eastern Mongolia–northeastern China can be identified, and the EPE variations over WS and ES are focused on here. On an interannual time scale, higher EPE frequencies are related to a similar dipole pattern in the upper troposphere [anomalous cyclone (anticyclone) to the west (southeast) of these two subregions] and a local anomalous cyclone in the lower troposphere. The dipole pattern leads to anomalous air divergence in the upper troposphere and compensating ascending motion over the subregions; the local anomalous cyclone in the lower troposphere leads to water vapor convergence. These anomalous atmospheric circulations therefore provide favorable dynamic and moisture conditions for higher EPE frequencies. Further analysis indicates that the WS EPE frequency is influenced by the combination of polar–Eurasian (POL) and North Atlantic Oscillation (NAO) patterns, while the ES EPE frequency is influenced by Scandinavian (SCAND) [British–Baikal Corridor (BBC)] pattern over 1987–2004 (2005–15). The alternate influence on the ES EPE frequency may result from the interdecadal change in the structure of SCAND and BBC patterns. In addition, the East Asian summer monsoon (EASM) shows enhanced influence on ES EPE frequency after the late 1990s, which could be due to interdecadal strengthening and extending of the anomalous cyclone around Lake Baikal. This cyclone is concurrent with EASM, and its changes favor water vapor transported by EASM to ES after the late 1990s.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

This study investigates the spatial–temporal variations in summer extreme precipitation event (EPE) frequency over northern Asia and related atmospheric circulations. The division analysis indicates that three subregions of western Siberia (WS), eastern Siberia (ES), and eastern Mongolia–northeastern China can be identified, and the EPE variations over WS and ES are focused on here. On an interannual time scale, higher EPE frequencies are related to a similar dipole pattern in the upper troposphere [anomalous cyclone (anticyclone) to the west (southeast) of these two subregions] and a local anomalous cyclone in the lower troposphere. The dipole pattern leads to anomalous air divergence in the upper troposphere and compensating ascending motion over the subregions; the local anomalous cyclone in the lower troposphere leads to water vapor convergence. These anomalous atmospheric circulations therefore provide favorable dynamic and moisture conditions for higher EPE frequencies. Further analysis indicates that the WS EPE frequency is influenced by the combination of polar–Eurasian (POL) and North Atlantic Oscillation (NAO) patterns, while the ES EPE frequency is influenced by Scandinavian (SCAND) [British–Baikal Corridor (BBC)] pattern over 1987–2004 (2005–15). The alternate influence on the ES EPE frequency may result from the interdecadal change in the structure of SCAND and BBC patterns. In addition, the East Asian summer monsoon (EASM) shows enhanced influence on ES EPE frequency after the late 1990s, which could be due to interdecadal strengthening and extending of the anomalous cyclone around Lake Baikal. This cyclone is concurrent with EASM, and its changes favor water vapor transported by EASM to ES after the late 1990s.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn
Save