• Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. Van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWep v2 Global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., and D. R. Cox, 1964: An analysis of transformations. J. Roy. Stat. Soc., 26, 211252, https://doi.org/10.1111/J.2517-6161.1964.TB00553.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and A. G. Slater, 2006: Probabilistic quantitative precipitation estimation in complex terrain. J. Hydrometeor., 7, 322, https://doi.org/10.1175/JHM474.1.

    • Crossref
    • Export Citation
  • Cornes, R. C., G. van der Schrier, E. J. M. van den Besselaar, and P. D. Jones, 2018: An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos., 123, 93919409, https://doi.org/10.1029/2017JD028200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., K. N. Musselman, L. Lestak, F. M. Ralph, and N. P. Molotch, 2020: Extreme runoff generation from atmospheric river driven snowmelt during the 2017 Oroville Dam spillways incident. Geophys. Res. Lett., 47, e2020GL088189, https://doi.org/10.1029/2020GL088189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K. L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., S. Scott, N. Phu, B. Dan, and C. Wei, 2013: G-WADI PERSIANN-CCS GeoServer for extreme precipitation event monitoring. Sci. Cold Arid. Reg., 5, 615, https://doi.org/10.3724/SP.J.1226.2013.00006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., A. J. Newman, M. P. Clark, A. W. Wood, and X. Zheng, 2017: Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States. Hydrol. Earth Syst. Sci., 21, 635650, https://doi.org/10.5194/hess-21-635-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 343354, https://doi.org/10.1007/978-3-030-24568-9_19.

    • Crossref
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., J. J. Gourley, Y. Hong, J. Zhang, C. L. Saber Moazamigoodarzi, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, https://doi.org/10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., D. Miller, R. Fulton, and F. Ding, 2013: Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng., 18, 133142, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000523.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, and D. P. Lettenmaier, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., A. W. Wood, E. Clark, E. Rothwell, M. P. Clark, B. Nijssen, L. D. Brekke, and J. R. Arnold, 2017: An intercomparison of approaches for improving operational seasonal streamflow forecasts. Hydrol. Earth Syst. Sci., 21, 39153935, https://doi.org/10.5194/hess-21-3915-2017.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Miller, P., M. Barth, L. Benjamin, D. Helms, M. Campbell, J. Facundo, and J. O’Sullivan, 2005: The Meteorological Assimilation and Data Ingest System (MADIS): Providing value-added observations to the meteorological community. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, D.C., Amer. Meteor. Soc.,P1.95, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_98637.htm.

  • Newman, A. J., and Coauthors, 2015: Gridded ensemble precipitation and temperature estimates for the contiguous United States. J. Hydrometeor., 16, 24812500, https://doi.org/10.1175/JHM-D-15-0026.1.

  • Newman, A. J., M. P. Clark, R. J. Longman, E. Gilleland, T. W., Giambelluca, and J. Arnold, 2019: Use of daily station observations to produce high-resolution gridded probabilistic precipitation and temperature time series for the Hawaiian Islands. J. Hydrometeor., 20, 509529, https://doi.org/10.1175/JHM-D-18-0113.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., M. P. Clark, A. W. Wood, and J. R. Arnold, 2020: Probabilistic spatial meteorological estimates for Alaska and the Yukon. J. Geophys. Res. Atmos., 125, e2020JD032696, https://doi.org/10.1029/2020JD032696.

    • Search Google Scholar
    • Export Citation
  • Ren, H. L., and Coauthors, 2019: The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J. Meteor. Res., 33, 540552, https://doi.org/10.1007/s13351-019-8154-6.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and M. P. Clark, 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, https://doi.org/10.1175/JHM505.1.

    • Search Google Scholar
    • Export Citation
  • Tang, G., M. Clark, S. M. Papalexiou, A. Newman, A. Wood, D. Brunet, and P. Whitfield, 2021: EMDNA: Ensemble meteorological dataset for North America. Earth Syst. Sci. Data, 13, 33373362, https://doi.org/10.5194/essd-2020-303.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., and H. V. Gupta, 2005: Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess., 19, 378387, https://doi.org/10.1007/s00477-005-0006-5.

  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016051.

  • Zhang, J., Y. Qi, C. Langston, B. Kaney, and K. Howard, 2014: A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology. J. Hydrometeor., 15, 17941809, https://doi.org/10.1175/JHM-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 361 335 15
Full Text Views 199 184 3
PDF Downloads 207 195 8

Improving Station-Based Ensemble Surface Meteorological Analyses Using Numerical Weather Prediction: A Case Study of the Oroville Dam Crisis Precipitation Event

Patrick T. W. BunnaDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Patrick T. W. Bunn in
Current site
Google Scholar
PubMed
Close
,
Andrew W. WoodbClimate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew W. Wood in
Current site
Google Scholar
PubMed
Close
,
Andrew J. NewmancResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Newman in
Current site
Google Scholar
PubMed
Close
,
Hsin-I ChangaDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Hsin-I Chang in
Current site
Google Scholar
PubMed
Close
,
Christopher L. CastroaDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
Martyn P. ClarkdCentre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey R. ArnoldeResponses to Climate Change Program, U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey R. Arnold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface meteorological analyses serve a wide range of research and applications, including forcing inputs for hydrological and ecological models, climate analysis, and resource and emergency management. Quantifying uncertainty in such analyses would extend their utility for probabilistic hydrologic prediction and climate risk applications. With this motivation, we enhance and evaluate an approach for generating ensemble analyses of precipitation and temperature through the fusion of station observations, terrain information, and numerical weather prediction simulations of surface climate fields. In particular, we expand a spatial regression in which static terrain attributes serve as predictors for spatially distributed 1/16° daily surface precipitation and temperature by including forecast outputs from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction model as additional predictors. We demonstrate the approach for a case study domain of California, focusing on the meteorological conditions leading to the 2017 flood and spillway failure event at Lake Oroville. The approach extends the spatial regression capability of the Gridded Meteorological Ensemble Tool (GMET) and also adds cross validation to the uncertainty estimation component, enabling the use of predictive rather than calibration uncertainty. In evaluation against out-of-sample station observations, the HRRR-based predictors alone are found to be skillful for the study setting, leading to overall improvements in the enhanced GMET meteorological analyses. The methodology and associated tool represent a promising method for generating meteorological surface analyses for both research-oriented and operational applications, as well as a general strategy for merging in situ and gridded observations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick T. W. Bunn, ptwbunn@email.arizona.edu

Abstract

Surface meteorological analyses serve a wide range of research and applications, including forcing inputs for hydrological and ecological models, climate analysis, and resource and emergency management. Quantifying uncertainty in such analyses would extend their utility for probabilistic hydrologic prediction and climate risk applications. With this motivation, we enhance and evaluate an approach for generating ensemble analyses of precipitation and temperature through the fusion of station observations, terrain information, and numerical weather prediction simulations of surface climate fields. In particular, we expand a spatial regression in which static terrain attributes serve as predictors for spatially distributed 1/16° daily surface precipitation and temperature by including forecast outputs from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction model as additional predictors. We demonstrate the approach for a case study domain of California, focusing on the meteorological conditions leading to the 2017 flood and spillway failure event at Lake Oroville. The approach extends the spatial regression capability of the Gridded Meteorological Ensemble Tool (GMET) and also adds cross validation to the uncertainty estimation component, enabling the use of predictive rather than calibration uncertainty. In evaluation against out-of-sample station observations, the HRRR-based predictors alone are found to be skillful for the study setting, leading to overall improvements in the enhanced GMET meteorological analyses. The methodology and associated tool represent a promising method for generating meteorological surface analyses for both research-oriented and operational applications, as well as a general strategy for merging in situ and gridded observations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick T. W. Bunn, ptwbunn@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 354 KB)
Save