Range Dependence of Polarimetric Radar Estimates for Extreme Flood-Producing Rainfall in Urban Watersheds

Molly Margaret Chaney aCivil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Molly Margaret Chaney in
Current site
Google Scholar
PubMed
Close
,
James A Smith aCivil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A Smith in
Current site
Google Scholar
PubMed
Close
, and
Mary Lynn Baeck aCivil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary Lynn Baeck in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We examine polarimetric rainfall estimates of extreme rainfall through intercomparisons of radar rainfall estimates with rainfall observations from a dense network of rain gauges in Kansas City. The setting provides unique capabilities for examining range dependence in polarimetric rainfall estimates due to the overlapping coverage of the Kansas City, Missouri, and Topeka, Kansas, WSR-88D radars. We focus on polarimetric measurements of specific differential phase shift, KDP, for estimating extreme rainfall. Gauge–radar intercomparisons from the “close-range” Kansas City radar and from the “far-range” Topeka radar show that KDP can provide major improvements in estimating extreme rainfall, but the advantages of KDP rainfall estimates diminish with range. Storm-to-storm variability of multiplicative bias remains an important issue for polarimetric rainfall estimates; variability in bias is comparable at both close and far range from the radar. “Conditional bias,” in which peak radar rainfall estimates are lower than rain gauge observations, is a systematic feature of polarimetric rainfall estimates, but is more severe at far range. The Kansas City region has experienced record flooding in urban watersheds since the polarimetric upgrade of the Kansas City and Topeka radars in 2012. Polarimetric rainfall estimates from the far-range Topeka radar provide useful quantitative information on basin-average rainfall, but the ability to resolve spatial variation of the most extreme rain rates diminishes significantly with range from the radar.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Molly Margaret Chaney, mchaney@princeton.edu

Abstract

We examine polarimetric rainfall estimates of extreme rainfall through intercomparisons of radar rainfall estimates with rainfall observations from a dense network of rain gauges in Kansas City. The setting provides unique capabilities for examining range dependence in polarimetric rainfall estimates due to the overlapping coverage of the Kansas City, Missouri, and Topeka, Kansas, WSR-88D radars. We focus on polarimetric measurements of specific differential phase shift, KDP, for estimating extreme rainfall. Gauge–radar intercomparisons from the “close-range” Kansas City radar and from the “far-range” Topeka radar show that KDP can provide major improvements in estimating extreme rainfall, but the advantages of KDP rainfall estimates diminish with range. Storm-to-storm variability of multiplicative bias remains an important issue for polarimetric rainfall estimates; variability in bias is comparable at both close and far range from the radar. “Conditional bias,” in which peak radar rainfall estimates are lower than rain gauge observations, is a systematic feature of polarimetric rainfall estimates, but is more severe at far range. The Kansas City region has experienced record flooding in urban watersheds since the polarimetric upgrade of the Kansas City and Topeka radars in 2012. Polarimetric rainfall estimates from the far-range Topeka radar provide useful quantitative information on basin-average rainfall, but the ability to resolve spatial variation of the most extreme rain rates diminishes significantly with range from the radar.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Molly Margaret Chaney, mchaney@princeton.edu
Save
  • Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, https://doi.org/10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baeck, M. L., and J. A. Smith, 1998: Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13, 416436, https://doi.org/10.1175/1520-0434(1998)013<0416:REBTWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, https://doi.org/10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berne, A., and W. F. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour., 51, 357366, https://doi.org/10.1016/j.advwatres.2012.05.005.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., A. V. Ryzhkov, and D. S. Zrnić, 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18, 363375, https://doi.org/10.1175/1520-0426(2001)018<0363:AEORRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. Bringi, N. Balakrishnan, and D. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629, https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., M. L. Morrissey, and W. F. Krajewski, 2000: Conditional bias in radar rainfall estimation. J. Appl. Meteor., 39, 19411946, https://doi.org/10.1175/1520-0450(2000)039<1941:CBIRRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, M. L. Baeck, and W. F. Krajewski, 2013: An early performance evaluation of the NEXRAD dual polarization radar rainfall estimates for urban flood applications. Wea. Forecasting, 28, 14781497, https://doi.org/10.1175/WAF-D-13-00046.1.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., G. Austin, and D. Tees, 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118, 435453, https://doi.org/10.1002/qj.49711850503.

    • Search Google Scholar
    • Export Citation
  • Fulton, R., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and W. F. Krajewski, 2004: Assessment of the statistical characterization of small-scale rainfall variability from radar: Analysis of TRMM ground validation datasets. J. Appl. Meteor., 43, 11801199, https://doi.org/10.1175/1520-0450(2004)043<1180:AOTSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, https://doi.org/10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., S. E. Giangrande, Y. Hong, Z. L. Flamig, T. Schuur, and J. A. Vrugt, 2010: Impacts of polarimetric radar observations on hydrologic simulation. J. Hydrometeor., 11, 781796, https://doi.org/10.1175/2010JHM1218.1.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and E. A. Mueller, 1985: Estimation of propagation-differential phase shift from sequential orthogonal linear polarization radar measurements. J. Atmos. Oceanic Technol., 2, 133137, https://doi.org/10.1175/1520-0426(1985)002<0133:EOPDPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and R. Lee, 1995: The application of radar gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor. Climatol., 34, 26122630, https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., R. Brown, and A. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120, 12311254, https://doi.org/10.1002/qj.49712051906.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, https://doi.org/10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162, https://doi.org/10.1623/hysj.48.2.151.44694.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., B. Vignal, B. C. Seo, and G. Villarini, 2011: Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity. J. Hydrol., 402, 306316, https://doi.org/10.1016/j.jhydrol.2011.03.024.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization radar. J. Oper. Meteor., 1, 226274, https://doi.org/10.15191/nwajom.2013.0121.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, https://doi.org/10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” Flood. Mon. Wea. Rev., 148, 83109, https://doi.org/10.1175/MWR-D-19-0206.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. Ryzhkov, D. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Reimel, K. J., and M. Kumjian, 2021: Evaluation of KDP estimation algorithm performance in rain using a known-truth framework. J. Atmos. Oceanic Technol., 38, 587605, https://doi.org/10.1175/JTECH-D-20-0060.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor. Climatol., 35, 20802090, https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer International Publishing, 486 pp.

  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247, https://doi.org/10.1029/RS021i002p00235.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598, https://doi.org/10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., and Coauthors, 2020: The accuracy of weather radar in heavy rain: A comparative study for Denmark, the Netherlands, Finland and Sweden. Hydrol. Earth Syst. Sci., 24, 31573188, https://doi.org/10.5194/hess-24-3157-2020.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Search Google Scholar
    • Export Citation
  • Seo, B. C., and W. F. Krajewski, 2011: Investigation of the scale-dependent variability of radar-rainfall and rain gauge error covariance. Adv. Water Resour., 34, 152163, https://doi.org/10.1016/j.advwatres.2010.10.006.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., and J. P. Breidenbach, 2002: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeor., 3, 93111, https://doi.org/10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., J. P. Breidenbach, R. Fulton, D. Miller, and T. O’Bannon, 2000: Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeor., 1, 222240, https://doi.org/10.1175/1525-7541(2000)001<0222:RTAORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, M. J., and N. I. Fox, 2018: Dual-polarized quantitative precipitation estimation as a function of range. Hydrol. Earth Syst. Sci., 22, 33753389, https://doi.org/10.5194/hess-22-3375-2018.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., and J. A. Smith, 2015: The flashiest watersheds in the contiguous United States. J. Hydrometeor., 16, 23652381, https://doi.org/10.1175/JHM-D-14-0217.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., J. A. Smith, M. L. Baeck, G. Villarini, and D. B. Wright, 2013: The spectrum of storm event hydrologic response in urban watersheds. Water Resour. Res., 49, 26492663, https://doi.org/10.1002/wrcr.20223.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and W. F. Krajewski, 1991: Estimation of the mean field bias of radar rainfall estimates. J. Appl. Meteor., 30, 397412, https://doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, https://doi.org/10.1029/96WR00270.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317326, https://doi.org/10.1016/S0169-8095(97)00086-0.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39, 19231940, https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorndahl, S., J. E. Nielsen, and M. R. Rasmussen, 2014: Bias adjustment and advection interpolation of long-term high resolution radar rainfall series. J. Hydrol., 508, 214226, https://doi.org/10.1016/j.jhydrol.2013.10.056.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, https://doi.org/10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, https://doi.org/10.1175/JAMC-D-15-0077.1.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., H. Andrieu, and J. D. Creutin, 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor. Climatol., 38, 12141228, https://doi.org/10.1175/1520-0450(1999)038<1214:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and D.-J. Seo, 2017: Recursive estimators of mean-areal and local bias in precipitation products that account for conditional bias. Adv. Water Resour., 101, 4959, https://doi.org/10.1016/j.advwatres.2017.01.002.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, https://doi.org/10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 326 0 0
Full Text Views 192 80 6
PDF Downloads 200 84 6