• AghaKouchak, A., L. Y. Cheng, O. Mazdiyasni, and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 88478852, https://doi.org/10.1002/2014GL062308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainembabaz, J. H., J. Rusike, and B. Keizire, 2018: The 2015–16 El Niño-induced drought crisis in Southern Africa: Lessons from historical data and policy implications. AGRA, 31 pp., https://agra.org/wp-content/uploads/2020/08/AGRA-drought-crisis-in-Southern-Africa_v2-.pdf.

    • Crossref
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. Trigo, and R. Garcia-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 US drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Guestrin, 2016: Xgboost: A scalable tree boosting system. Proc. 22nd ACM Sigkdd Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, J. Association for Computing Machinery, 785794, https://doi.org/10.1145/2939672.2939785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., and Coauthors, 2016: The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Climate Dyn., 46, 37373752, https://doi.org/10.1007/s00382-015-2800-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., H. L. Wang, R. D. Koster, S. D. Schubert, Y. H. Chang, and J. Marshak, 2020: Prediction skill of the 2012 US Great Plains flash drought in Subseasonal Experiment (SubX) models. J. Climate, 33, 62296253, https://doi.org/10.1175/JCLI-D-19-0863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Capua, G., S. Sparrow, K. Kornhuber, E. Rousi, S. Osprey, D. Wallom, B. van den Hurk, and D. Coumou, 2021: Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. NPJ Climate Atmos. Sci., 4, 55, https://doi.org/10.1038/s41612-021-00211-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., G. L. Wang, and L. Fomenko, 2017: Unprecedented drought over tropical South America in 2016: Significantly under-predicted by tropical SST. Sci. Rep., 7, 5811, https://doi.org/10.1038/s41598-017-05373-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, D. N., and Coauthors, 2016: What caused the spring intensification and winter demise of the 2011 drought over Texas? Climate Dyn., 47, 30773090, https://doi.org/10.1007/s00382-016-3014-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folberth, C., A. Baklanov, J. Balkovič, R. Skalský, N. Khabarov, and M. Obersteiner, 2019: Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric. For. Meteor., 264, 115, https://doi.org/10.1016/j.agrformet.2018.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fragkoulidis, G., V. Wirth, P. Bossmann, and A. H. Fink, 2018: Linking northern hemisphere temperature extremes to Rossby wave packets. Quart. J. Roy. Meteor. Soc., 144, 553566, https://doi.org/10.1002/qj.3228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., W. E. Chapman, A. Altinok, L. Delle Monache, M. J. DeFlorio, and D. E. Waliser, 2021: Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth Environ., 2, 159, https://doi.org/10.1038/s43247-021-00225-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., W. A. Dorigo, W. Crow, and W. Wagner, 2017: Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 55, 67806792, https://doi.org/10.1109/TGRS.2017.2734070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, M., R. Orth, and S. I. Seneviratne, 2016: Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett., 43, 28192826, https://doi.org/10.1002/2016GL068036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., E. Walsh, K. Hodges, and G. Zappa, 2018: Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett., 13, 124006, https://doi.org/10.1088/1748-9326/aaed59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera-Estrada, J. E., J. A. Martinez, F. Dominguez, K. L. Findell, E. F. Wood, and J. Sheffield, 2019: Reduced moisture transport linked to drought propagation across North America. Geophys. Res. Lett., 46, 52435253, https://doi.org/10.1029/2019GL082475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez-Munoz, J. C., C. Mattar, J. Barichivich, A. S.-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D. C., Z. Y. Guan, and W. Y. Tang, 2013: The extreme drought event during winter–spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region. J. Climate, 26, 82108222, https://doi.org/10.1175/JCLI-D-12-00652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kam, J., S. Kim, and J. K. Roundy, 2021: Did a skillful prediction of near-surface temperatures help or hinder forecasting of the 2012 US drought? Environ. Res. Lett., 16, 034044, https://doi.org/10.1088/1748-9326/abe1f6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K. M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M. Y., Y. Yao, I. Simmonds, D. H. Luo, L. H. Zhong, and X. D. Chen, 2020: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018. Environ. Res. Lett., 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. B., B. He, L. L. Guo, L. Huang, and D. L. Chen, 2020: Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earth’s Future, 8, e2019EF001386, https://doi.org/10.1029/2019EF001386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. C., and W. Zhou, 2021: The 2019 autumn hot drought over the middle-lower reaches of the Yangtze River in China: Early propagation, process evolution, and concurrence. J. Geophys. Res. Atmos., 126, e2020JD033742, https://doi.org/10.1029/2020JD033742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. C., G. H. Lu, H. He, Z. Y. Wu, and J. He, 2017: Understanding atmospheric anomalies associated with seasonal pluvial-drought processes using southwest China as an example. J. Geophys. Res. Atmos., 122, 12 21012 225, https://doi.org/10.1002/2017JD026867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares, and D. A. Rodriguez, 2011: The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, https://doi.org/10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owen, L. E., J. L. Catto, D. B. Stephenson, and N. J. Dunstone, 2021: Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Wea. Climate Extremes, 33, 100342, https://doi.org/10.1016/j.wace.2021.100342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramakrishna, S. S. V. S., V. B. Rao, B. R. S. Rao, D. H. Prasad, N. N. Rao, and R. Panda, 2017: A study of 2014 record drought in India with CFSv2 model: Role of water vapor transport. Climate Dyn., 49, 297312, https://doi.org/10.1007/s00382-016-3343-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., A. S. Taschetto, A. Sen Gupta, and G. R. Foltz, 2019: Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci., 12, 620626, https://doi.org/10.1038/s41561-019-0393-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. L. Wang, R. D. Koster, M. J. Suarez, and P. Y. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, D. L., J. Keune, C. C. van Heerwaarden, J. V. G. de Arellano, A. J. Teuling, and D. G. Miralles, 2019: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci., 12, 712717, https://doi.org/10.1038/s41561-019-0431-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shahhosseini, M., G. Hu, I. Huber, and S. V. Archontoulis, 2021: Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep., 11, 1606, https://doi.org/10.1038/s41598-020-80820-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., M. Garcia-Reyes, M. G. Jacox, R. R. Rykaczewski, B. A. Black, S. J. Bograd, and W. J. Sydeman, 2021: Co-occurrence of California drought and northeast Pacific marine heatwaves under climate change. Geophys. Res. Lett., 48, e2021GL092765, https://doi.org/10.1029/2021GL092765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., and S. P. He, 2015: The north China/northeastern Asia severe summer drought in 2014. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. L., S. Schubert, R. Koster, Y. G. Ham, and M. Suarez, 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, https://doi.org/10.1175/JHM-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, https://doi.org/10.1002/joc.3822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. S., X. Yuan, and Y. H. Li, 2017: Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep., 7, 40741, https://doi.org/10.1038/srep40741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. S.-C., Y. Qian, L. R. Leung, and Y. Zhang, 2021: Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earth’s Future, 9, e2020EF001910, https://doi.org/10.1029/2020EF001910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrli, K., B. P. Guillod, M. Hauser, M. Leclair, and S. I. Seneviratne, 2019: Identifying key driving processes of major recent heat waves. J. Geophys. Res. Atmos., 124, 11 74611 765, https://doi.org/10.1029/2019JD030635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., K. Kornhuber, O. Martius, and V. Wirth, 2022: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent and extreme extratropical weather. Bull. Amer. Meteor. Soc., 103, E923E935, https://doi.org/10.1175/BAMS-D-21-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., H. Y. Miao, B. Q. Liu, C. Y. Tam, and W. Q. Wang, 2020: Aggravation of record-breaking drought over the mid-to-lower reaches of the Yangtze River in the post-monsoon season of 2019 by anomalous Indo-Pacific oceanic conditions. Geophys. Res. Lett., 47, e2020GL090847, https://doi.org/10.1029/2020GL090847.

    • Search Google Scholar
    • Export Citation
  • Yiou, P., and Coauthors, 2020: Analyses of the northern European summer heatwave of 2018. Bull. Amer. Meteor. Soc., 101, S35S40, https://doi.org/10.1175/BAMS-D-19-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, D. W., and X. Yuan, 2021: Modeling the influence of upstream land–atmosphere coupling on the 2017 persistent drought over northeast China. J. Climate, 34, 49714988, https://doi.org/10.1175/JCLI-D-20-0650.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, D. W., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land–atmosphere coupling on Northeast China persistent drought in spring–summer of 2017. J. Climate, 32, 74037420, https://doi.org/10.1175/JCLI-D-19-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. J., W. Mao, F. Jiang, M. F. Stuecker, F. F. Jin, and L. Qi, 2021a: Tropical indo-pacific compounding thermal conditions drive the 2019 Australian extreme drought. Geophys. Res. Lett., 48, e2020GL090323, https://doi.org/10.1029/2020GL090323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. Liu, Y. H. Li, W. Shen, Y. L. Ren, D. W. Zeng, and S. Sha, 2021b: Water vapor changes affect cross-seasonal strong drought events in the eastern region of northwest China. Front. Earth Sci., 9, 609321, https://doi.org/10.3389/feart.2021.609321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2014: Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochem. Cycles, 28, 585600, https://doi.org/10.1002/2014GB004826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2018: Future climate risk from compound events. Nat. Climate Change, 8, 469477, https://doi.org/10.1038/s41558-018-0156-3.

    • Search Google Scholar
    • Export Citation
  • Zschenderlein, P., A. H. Fink, S. Pfahl, and H. Wernli, 2019: Processes determining heat waves across different European climates. Quart. J. Roy. Meteor. Soc., 145, 29732989, https://doi.org/10.1002/qj.3599.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 511 510 94
Full Text Views 63 63 8
PDF Downloads 84 84 7

Global-Scale Interpretable Drought Reconstruction Utilizing Anomalies of Atmospheric Dynamics

Zhenchen LiuaDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Zhenchen Liu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3297-4841
,
Wen ZhouaDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
,
Ruhua ZhangaDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bGuy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Ruhua Zhang in
Current site
Google Scholar
PubMed
Close
,
Yue ZhangaDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bGuy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Yue Zhang in
Current site
Google Scholar
PubMed
Close
, and
Ya WangcState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ya Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Droughts and associated near-surface temperature anomalies can be attributed to amplified vertical subsidence and anomalous anticyclonic circulations from dynamic perspectives. However, two open and interesting issues remain unknown: 1) whether hydrometeorological situations under droughts can be reproduced directly utilizing variability of atmospheric dynamics and 2) what specific roles atmospheric dynamics play in drought reconstruction. To explore these questions, this study employs three kinds of dynamic features (i.e., vertical velocity, relative vorticity, and horizontal divergence) for hydrometeorological reconstruction (e.g., precipitation and near-surface air temperature) under drought situations through a so-called XGBoost (extreme gradient boosting) ensemble learning method. The study adopts two different reconstruction schemes (i.e., statistically preexisting dynamic–hydrometeorological relationships and interannual variability) and finds dynamically based reconstruction feasible. The three main achievements are as follows. 1) Regarding different hydrometeorological situations reconstructed with preexisting dynamic–hydrometeorological relationships, good reconstruction performance can be captured with the same or different lead times, depending on whether the evolution of dynamic anomalies (e.g., vertical motion and relative vorticity) is temporally asynchronous. 2) Reconstruction on the interannual scale performs relatively well, seemingly regardless of seasonality and drought-inducing mechanisms. 3) More importantly, from interpretable perspectives, global-scale analysis of dynamic contributions helps discover unexpected dynamic drought-inducing roles and associated latitudinal modulation. That is, low-level cyclonic/anticyclonic anomalies contribute to drought development in the northern middle and high latitudes, while upper-level vertical subsidence contributes significantly to tropical near-surface temperature anomalies concurrent with droughts. These achievements could provide guidance for dynamically based drought monitoring and prediction in different geographic regions.

Significance Statement

It is common sense that severe drought events are physically attributable to amplified vertical subsidence and anomalous anticyclonic circulations. However, the specific contributions of atmospheric dynamics, together with the feasibility of dynamically based drought reconstruction, are crucial components that are seldom investigated. To our knowledge, this manuscript is the first to reconstruct drought utilizing atmospheric dynamics and to interpret quantified dynamic contributions; it also represents a new interdisciplinary attempt to reproduce hydrological variability based on routine atmospheric dynamic variables.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, Wen_zhou@fudan.edu.cn

Abstract

Droughts and associated near-surface temperature anomalies can be attributed to amplified vertical subsidence and anomalous anticyclonic circulations from dynamic perspectives. However, two open and interesting issues remain unknown: 1) whether hydrometeorological situations under droughts can be reproduced directly utilizing variability of atmospheric dynamics and 2) what specific roles atmospheric dynamics play in drought reconstruction. To explore these questions, this study employs three kinds of dynamic features (i.e., vertical velocity, relative vorticity, and horizontal divergence) for hydrometeorological reconstruction (e.g., precipitation and near-surface air temperature) under drought situations through a so-called XGBoost (extreme gradient boosting) ensemble learning method. The study adopts two different reconstruction schemes (i.e., statistically preexisting dynamic–hydrometeorological relationships and interannual variability) and finds dynamically based reconstruction feasible. The three main achievements are as follows. 1) Regarding different hydrometeorological situations reconstructed with preexisting dynamic–hydrometeorological relationships, good reconstruction performance can be captured with the same or different lead times, depending on whether the evolution of dynamic anomalies (e.g., vertical motion and relative vorticity) is temporally asynchronous. 2) Reconstruction on the interannual scale performs relatively well, seemingly regardless of seasonality and drought-inducing mechanisms. 3) More importantly, from interpretable perspectives, global-scale analysis of dynamic contributions helps discover unexpected dynamic drought-inducing roles and associated latitudinal modulation. That is, low-level cyclonic/anticyclonic anomalies contribute to drought development in the northern middle and high latitudes, while upper-level vertical subsidence contributes significantly to tropical near-surface temperature anomalies concurrent with droughts. These achievements could provide guidance for dynamically based drought monitoring and prediction in different geographic regions.

Significance Statement

It is common sense that severe drought events are physically attributable to amplified vertical subsidence and anomalous anticyclonic circulations. However, the specific contributions of atmospheric dynamics, together with the feasibility of dynamically based drought reconstruction, are crucial components that are seldom investigated. To our knowledge, this manuscript is the first to reconstruct drought utilizing atmospheric dynamics and to interpret quantified dynamic contributions; it also represents a new interdisciplinary attempt to reproduce hydrological variability based on routine atmospheric dynamic variables.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, Wen_zhou@fudan.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 20.4 MB)
Save