• Arsenault, K., and Coauthors, 2018: The Land surface Data Toolkit (LDT v7.2)—A data fusion environment for land data assimilation systems. Geosci. Model Dev., 11, 36053621, https://doi.org/10.5194/gmd-11-3605-2018.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and E. G. Dutton, 2013: Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements. J. Geophys. Res. Atmos., 118, 4353, https://doi.org/10.1029/2012JD018551.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., J. J. DeLuisi, and C. N. Long, 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 2341–2358, https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

  • Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, 2005: An update on SURFRAD—The GCOS surface radiation budget network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, https://doi.org/10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • BloomS. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm poolQuart. J. Roy. Meteor. Soc.123357388, https://doi.org/10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, 51 pp., http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990060930.pdf.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., K.-T. Lee, and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107, 4600, https://doi.org/10.1029/2002JD002061.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Search Google Scholar
    • Export Citation
  • d’Entremont, R. P., R. Lynch, G. Uymin, J.-L. Moncet, R. B. Aschbrenner, M. Conner, and G. B. Gustafson, 2016: Application of optimal spectral sampling for a real-time global cloud analysis model. Wea. Forecasting, 31, 743761, https://doi.org/10.1175/WAF-D-15-0077.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387+STR, 80 pp., https://doi.org/10.5065/D67W6959.

    • Search Google Scholar
    • Export Citation
  • Driemel, A., and Coauthors, 2018: Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data, 10, 14911501, https://doi.org/10.5194/essd-2018-8.

    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., and Coauthors, 2001The ScaRaB–Resurs Earth Radiation Budget Dataset and first results.  Bull. Amer. Meteor. Soc.8213971408, https://doi.org/10.1175/1520-0477(2001)082%3C1397:TSRERB%3E2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale modelQuart. J. Roy. Meteor. Soc., 122689719, https://doi.org/10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah landsurface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavg1_2d_rad_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 31 January 2018, https://doi.org/10.5067/Q9QMY5PBNV1T.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018a: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Report Series Doc. 27, 65 pp., https://doi.org/10.21957/tkic6g3wm.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 24 September 2021, https://doi.org/10.24381/cds.adbb2d47.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079%3C0831:OPOAAC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976The Delta-Eddington approximation for radiative flux transferJ. Atmos. Sci.3324522459, https://doi.org/10.1175/1520-0469(1976)033%3C2452:TDEAFR%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEPs Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992 : Modeling the land surface boundary in climate models as a composite of independent vegetation standsJ. Geophys. Res., 97, 26972715, https://doi.org/10.1029/91JD01696.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, Y. Tian, R. H. Reichle, J. Geiger, C. Alonge, J. Eylander, and P. Houser, 2008a: An integrated hydrologic modeling and data assimilation framework. IEEE Comput., 41, 5259, https://doi.org/10.1109/MC.2008.475.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, C. D. Peters-Lidard, R. D. Koster, X. Zhan, W. T. Crow, J. B. Eylander, and P. R. Houser, 2008b: A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour., 31, 14191432, https://doi.org/10.1016/j.advwatres.2008.01.013.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, D. M. Mocko, and Y. Tian, 2013: Multiscale evaluation of the improvements in surface snow simulation through terrain adjustments to radiation. J. Hydrometeor., 14, 220232, https://doi.org/10.1175/JHM-D-12-046.1.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphereJ. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031%3C0118:APFTAO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and R. T. Pinker, 2012: Shortwave radiative fluxes from satellites: An update. J. Geophys. Res., 117, D23202, https://doi.org/10.1029/2012JD018332.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth’s surfaceMon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097%3C0739:CATOC%3E2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The Multi-institution North American Land Data Assimilation System (NLDAS): Utilization of multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suárez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2007: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158, https://doi.org/10.1109/TGRS.2004.838359.

    • Search Google Scholar
    • Export Citation
  • Niu, X., and R. T. Pinker, 2015: An improved methodology for deriving high resolution surface shortwave radiative fluxes from MODIS in the Arctic region. J. Geophys. Res. Atmos., 120, 23822393, https://doi.org/10.1002/2014JD022151.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1988: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., B. Zhang, R. A. Weller, and W. Chen, 2018: Evaluating surface radiation fluxes observed from satellites in the southeastern Pacific Ocean. Geophys. Res. Lett., 45, 24042412, https://doi.org/10.1002/2017GL076805.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from terra and aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and S. M. Freidenreich, 1992: A study of broadband parameterizations of the solar radiative interactions with water vapor and water drops. J. Geophys. Res., 97, 1148711 512, https://doi.org/10.1029/92JD00932.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2013: Inter-comparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom radiative transfer experiment. Atmos. Chem. Phys., 13, 23472379, https://doi.org/10.5194/acp-13-2347-2013.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072%3C0002:ICDP%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1972 : Simple model for the calculation of the flux of solar radiation through the atmosphere. Appl. Opt., 11, 760764, https://doi.org/10.1364/AO.11.000760.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation testbed. Bull. Amer. Meteor. Soc., 75, 12011222, https://doi.org/10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and, R. T. Pinker, 2009: Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res., 114, D20201, https://doi.org/10.1029/2008JD010442.

    • Search Google Scholar
    • Export Citation
  • Wonsick, M. M., R. T. Pinker and Y. Govaerts, 2009: Cloud variability over the Indian monsoon region as observed from satellites . J. Appl. Meteor. Climatol., 48, 18031821, https://doi.org/10.1175/2009JAMC2027.1.

    • Search Google Scholar
    • Export Citation
  • Wood, E., and Coauthors, 1998: The Project for Inter-comparison of Land-Surface Parameterization Schemes (PILPS) Phase2(c) Red-Arkansas River basin experiment: 1. Experiment description and summary inter-comparisons. Global Planet. Change, 19, 115135, https://doi.org/10.1016/S0921-8181(98)00044-7.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 291 291 9
Full Text Views 110 110 1
PDF Downloads 131 131 2

Surface Shortwave Radiative Fluxes Derived from the U.S. Air Force Cloud Depiction Forecast System World-Wide Merged Cloud Analysis

Rachel T. PinkeraDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
,
Wen ChenaDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
,
Yingtao MaaDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Yingtao Ma in
Current site
Google Scholar
PubMed
Close
,
Sujay KumarbHydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by Sujay Kumar in
Current site
Google Scholar
PubMed
Close
,
Jerry WegielbHydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
cScience Applications International Corporation, McLean, Virginia

Search for other papers by Jerry Wegiel in
Current site
Google Scholar
PubMed
Close
, and
Eric KempbHydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
dScience Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Eric Kemp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a global-scale evaluation of surface shortwave (SW↓) radiative fluxes as derived with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA) and implemented in the framework of the NASA Land Information System (LIS). Evaluation of this product is done against ground observations, a satellite-based product from the Moderate Resolution Imaging Spectroradiometer (MODIS), and several reanalysis outputs. While the LIS/USAF product tends to overestimate the SW↓ fluxes when compared to ground observations and satellite estimates, its performance is comparable or better than the following reanalysis products: ERA5, CFSR, and MERRA-2. Results are presented using all available observations over the globe and independently for several regional domains of interest. When evaluated against ground observations over the globe, the bias in the LIS/USAF product at daily time scale was about 9.34 W m−2 and the RMS was 29.20 W m−2 while over the United States the bias was about 10.65 W m−2 and the RMS was 35.31 W m−2. The sample sizes used were not uniform over the different regions, and the quality of both ground truth and the outputs of the other products may vary regionally. It is important to note that the LIS/USAF is a near-real-time (NRT) product of interest for potential users and as such fills a need that is not met by most products. Due to latency issues, the level of observational inputs in the NRT product is less than in the reanalysis data.

Significance Statement

We evaluate a current scheme to produce surface radiative fluxes in the NASA Land Information System (LIS) framework as driven with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA). The LIS/USAF product is provided at near–real time and as such, fills a need that is not met by most products. Information used for evaluation are ground observations, MODIS satellite-based estimates, and independent outputs from several reanalysis. Since the various LIS products are used by the hydrometeorology community, this manuscript should be of interest to the users of the LIS/USAF information on surface radiative fluxes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel T. Pinker, pinker@atmos.umd.edu

Abstract

We present a global-scale evaluation of surface shortwave (SW↓) radiative fluxes as derived with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA) and implemented in the framework of the NASA Land Information System (LIS). Evaluation of this product is done against ground observations, a satellite-based product from the Moderate Resolution Imaging Spectroradiometer (MODIS), and several reanalysis outputs. While the LIS/USAF product tends to overestimate the SW↓ fluxes when compared to ground observations and satellite estimates, its performance is comparable or better than the following reanalysis products: ERA5, CFSR, and MERRA-2. Results are presented using all available observations over the globe and independently for several regional domains of interest. When evaluated against ground observations over the globe, the bias in the LIS/USAF product at daily time scale was about 9.34 W m−2 and the RMS was 29.20 W m−2 while over the United States the bias was about 10.65 W m−2 and the RMS was 35.31 W m−2. The sample sizes used were not uniform over the different regions, and the quality of both ground truth and the outputs of the other products may vary regionally. It is important to note that the LIS/USAF is a near-real-time (NRT) product of interest for potential users and as such fills a need that is not met by most products. Due to latency issues, the level of observational inputs in the NRT product is less than in the reanalysis data.

Significance Statement

We evaluate a current scheme to produce surface radiative fluxes in the NASA Land Information System (LIS) framework as driven with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA). The LIS/USAF product is provided at near–real time and as such, fills a need that is not met by most products. Information used for evaluation are ground observations, MODIS satellite-based estimates, and independent outputs from several reanalysis. Since the various LIS products are used by the hydrometeorology community, this manuscript should be of interest to the users of the LIS/USAF information on surface radiative fluxes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel T. Pinker, pinker@atmos.umd.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.98 MB)
Save