• Anderson, W., and Coauthors, 2021: Violent conflict exacerbated drought-related food insecurity between 2009 and 2019 in sub-Saharan Africa. Nat. Food, 2, 603615, https://doi.org/10.1038/s43016-021-00327-4.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American multimodel ensemble. Climate Dyn., 53, 72157234, https://doi.org/10.1007/s00382-017-3603-3.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Blau, M. T., and K.-J. Ha, 2020: The Indian Ocean dipole and its impact on East African short rains in two CMIP5 historical scenarios with and without anthropogenic influence. J. Geophys. Res. Atmos., 125, e2020JD033121, https://doi.org/10.1029/2020JD033121.

    • Search Google Scholar
    • Export Citation
  • Camberlin, P., and R. Okoola, 2003: The onset and cessation of the “long rains” in eastern Africa and their interannual variability. Theor. Appl. Climatol., 75, 4354, https://doi.org/10.1007/s00704-002-0721-5.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017a: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and Coauthors, 2017b: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 62411 635, https://doi.org/10.1002/2017GL074904.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., L. Magnusson, F. Wetterhall, H. L. Cloke, G. Balsamo, S. Boussetta, and F. Pappenberger, 2013: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol., 33, 17201729, https://doi.org/10.1002/joc.3545.

    • Search Google Scholar
    • Export Citation
  • FEWS NET, 2021: The eastern Horn of Africa faces an exceptional prolonged and persistent agro-pastoral drought sequence. ICPAC/FEWS NET/FAO GIEWS/WFP/JRC Tech. Rep., 8 pp., https://mars.jrc.ec.europa.eu/asap/files/special_focus_2021_11.pdf.

  • Funk, C., and A. Hoell, 2015: The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate. J. Climate, 28, 43094329, https://doi.org/10.1175/JCLI-D-14-00334.1.

    • Search Google Scholar
    • Export Citation
  • Funk, C., A. Hoell, S. Shukla, I. Blade, B. Liebmann, J. B. Roberts, F. R. Robertson, and G. Husak, 2014: Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci., 18, 49654978, https://doi.org/10.5194/hess-18-4965-2014.

    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2018: Examining the role of unusually warm Indo-Pacific sea-surface temperatures in recent African droughts. Quart. J. Roy. Meteor. Soc., 144, 360383, https://doi.org/10.1002/qj.3266.

    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2019: Examining the potential contributions of extreme “Western V” sea surface temperatures to the 2017 March–June East African drought. Bull. Amer. Meteor. Soc., 100 (1), S55S60, https://doi.org/10.1175/BAMS-D-18-0108.1.

    • Search Google Scholar
    • Export Citation
  • Ghiggi, G., V. Humphrey, S. I. Seneviratne, and L. Gudmundsson, 2019: GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data, 11, 16551674, https://doi.org/10.5194/essd-11-1655-2019.

    • Search Google Scholar
    • Export Citation
  • Gleixner, S., T. Demissie, and G. T. Diro, 2020: Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere, 11, 996, https://doi.org/10.3390/atmos11090996.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. E. Graham, 1999: Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19 09919 116, https://doi.org/10.1029/1999JD900326.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568572, https://doi.org/10.1038/s41586-019-1559-7.

    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., D. Polzin, and C. Mutai, 2011: Circulation mechanisms of Kenya rainfall anomalies. J. Climate, 24, 404412, https://doi.org/10.1175/2010JCLI3599.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2013: The ENSO-related west Pacific sea surface temperature gradient. J. Climate, 26, 95459562, https://doi.org/10.1175/JCLI-D-12-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2014: Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Climate Dyn., 43, 16451660, https://doi.org/10.1007/s00382-013-1991-6.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014: The regional forcing of Northern Hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dyn., 42, 32893311, https://doi.org/10.1007/s00382-013-1799-4.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, and W. B. Anderson, 2020: ENSO teleconnections and impacts on U.S summertime temperature during a multiyear La Niña life cycle. J. Climate, 33, 60096024, https://doi.org/10.1175/JCLI-D-19-0701.1.

    • Search Google Scholar
    • Export Citation
  • Lenssen, N. J., L. Goddard, and S. Mason, 2020: Seasonal forecast skill of ENSO teleconnection maps. Wea. Forecasting, 35, 23872406, https://doi.org/10.1175/WAF-D-19-0235.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2014: Understanding recent eastern Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, https://doi.org/10.1175/JCLI-D-13-00714.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2017: Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline. J. Climate, 30, 38673886, https://doi.org/10.1175/JCLI-D-16-0452.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., K. H. Cook, and E. K. Vizy, 2020: Influence of Indian Ocean SST regionality on the East African short rains. Climate Dyn., 54, 49915011, https://doi.org/10.1007/s00382-020-05265-8.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Search Google Scholar
    • Export Citation
  • Luseno, W. K., J. G. McPeak, C. B. Barrett, P. D. Little, and G. Gebru, 2003: Assessing the value of climate forecast information for pastoralists: Evidence from southern Ethiopia and northern Kenya. World Dev., 31, 14771494, https://doi.org/10.1016/S0305-750X(03)00113-X.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, https://doi.org/10.1029/2011GL050337.

    • Search Google Scholar
    • Export Citation
  • Maxwell, D., and N. Majid, 2016: Famine in Somalia: Competing Imperatives, Collective Failures, 2011–2012. Oxford University Press, 269 pp.

  • Maxwell, D., and P. Hailey, 2020: The politics of information and analysis in famines and extreme emergencies synthesis of findings from six case studies. Feinstein International Center Tech. Rep., 50 pp., https://fic.tufts.edu/wp-content/uploads/PIA-Synthesis-Report_May-13.pdf.

  • Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590635, https://doi.org/10.1002/2016RG000544.

    • Search Google Scholar
    • Export Citation
  • Okoola, R. E., 1999a: A diagnostic study of the eastern Africa monsoon circulation during the Northern Hemisphere spring season. Int. J. Climatol., 19, 143168, https://doi.org/10.1002/(SICI)1097-0088(199902)19:2%3C143::AID-JOC342%3E3.0.CO;2-U.

    • Search Google Scholar
    • Export Citation
  • Okoola, R. E., 1999b: Midtropospheric circulation patterns associated with extreme dry and wet episodes over equatorial eastern Africa during the Northern Hemisphere spring. J. Appl. Meteor. Climatol., 38, 11611169, https://doi.org/10.1175/1520-0450(1999)038<1161:MCPAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., P. DiNezio, and C. Deser, 2017: Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett., 44, 11 61411 623, https://doi.org/10.1002/2017GL075034.

    • Search Google Scholar
    • Export Citation
  • Rao, M. P., E. R. Cook, B. I. Cook, K. J. Anchukaitis, R. D. D’Arrigo, P. J. Krusic, and A. N. LeGrande, 2019: A double bootstrap approach to superposed epoch analysis to evaluate response uncertainty. Dendrochronologia, 55, 119124, https://doi.org/10.1016/j.dendro.2019.05.001.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rufino, M. C., and Coauthors, 2013: Transitions in agro-pastoralist systems of East Africa: Impacts on food security and poverty. Agric. Ecosyst. Environ., 179, 215230, https://doi.org/10.1016/j.agee.2013.08.019.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, and M. Ziese, 2018: GPCC full data monthly product version 2018 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Global Precipitation Climatology Centre, accessed 1 June 2021, https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html.

  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., C. Funk, and A. Hoell, 2014: Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa. Environ. Res. Lett., 9, 094009, https://doi.org/10.1088/1748-9326/9/9/094009.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., J. Roberts, A. Hoell, C. C. Funk, F. Robertson, and B. Kirtman, 2019: Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Climate Dyn., 53, 74117427, https://doi.org/10.1007/s00382-016-3296-z.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., G. Husak, W. Turner, F. Davenport, C. Funk, L. Harrison, and N. Krell, 2021: A slow rainy season onset is a reliable harbinger of drought in most food insecure regions in Sub-Saharan Africa. PLOS ONE, 16, e0242883, https://doi.org/10.1371/journal.pone.0242883.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., J. E. Smerdon, K. J. Anchukaitis, and R. Seager, 2013: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature, 493, 389392, https://doi.org/10.1038/nature11785.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., I. Richter, and Y. Kosaka, 2019: ENSO influence on the Atlantic Niño, revisited: Multi-year versus single-year ENSO events. J. Climate, 32, 45854600, https://doi.org/10.1175/JCLI-D-18-0683.1.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. Kulüke, and J. E. Tierney, 2018: Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales. Climate Dyn., 50, 29712991, https://doi.org/10.1007/s00382-017-3786-7.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, https://doi.org/10.1007/s00382-010-0984-y.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, and P. N. DiNezio, 2019: What controls the duration of El Niño and La Niña events? J. Climate, 32, 59415965, https://doi.org/10.1175/JCLI-D-18-0681.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, C. Deser, and P. N. DiNezio, 2021: Two-year dynamical predictions of ENSO event duration during 1954–2015. J. Climate, 34, 40694087, https://doi.org/10.1175/JCLI-D-20-0619.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2014: The East African long rains in observations and models. J. Climate, 27, 71857202, https://doi.org/10.1175/JCLI-D-13-00447.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2015: The annual cycle of East African precipitation. J. Climate, 28, 23852404, https://doi.org/10.1175/JCLI-D-14-00484.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1009 1009 129
Full Text Views 263 263 20
PDF Downloads 313 313 25

Multiyear La Niña Events and Multiseason Drought in the Horn of Africa

Weston AndersonaEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Weston Anderson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3755-9943
,
Benjamin I. CookcNASA Goddard Institute for Space Studies, New York, New York
dLamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
,
Kim SlinskiaEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kim Slinski in
Current site
Google Scholar
PubMed
Close
,
Kevin SchwarzwaldeInternational Research Institute for Climate and Society, Palisades, New York

Search for other papers by Kevin Schwarzwald in
Current site
Google Scholar
PubMed
Close
,
Amy McNallybNASA Goddard Space Flight Center, Greenbelt, Maryland
fU.S. Agency for International Development, Washington, D.C.

Search for other papers by Amy McNally in
Current site
Google Scholar
PubMed
Close
, and
Chris FunkgClimate Hazards Center, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Chris Funk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the primary sources of predictability for seasonal hydroclimate forecasts are sea surface temperatures (SSTs) in the tropical Pacific, including El Niño–Southern Oscillation. Multiyear La Niña events in particular may be both predictable at long lead times and favor drought in the bimodal rainfall regions of East Africa. However, SST patterns in the tropical Pacific and adjacent ocean basins often differ substantially between first- and second-year La Niñas, which can change how these events affect regional climate. Here, we demonstrate that multiyear La Niña events favor drought in the Horn of Africa in three consecutive seasons [October–December (OND), March–May (MAM), OND]. But they do not tend to increase the probability of a fourth season of drought owing to the sea surface temperatures and associated atmospheric teleconnections in the MAM long rains season following second-year La Niña events. First-year La Niñas tend to have both greater subsidence over the Horn of Africa, associated with warmer waters in the west Pacific that enhance the Walker circulation, and greater cross-continental moisture transport, associated with a warm tropical Atlantic, as compared to second-year La Niñas. Both the increased subsidence and enhanced cross-continental moisture transport favors drought in the Horn of Africa. Our results provide a physical understanding of the sources and limitations of predictability for using multiyear La Niña forecasts to predict drought in the Horn of Africa.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weston Anderson, weston.anderson@nasa.gov

Abstract

One of the primary sources of predictability for seasonal hydroclimate forecasts are sea surface temperatures (SSTs) in the tropical Pacific, including El Niño–Southern Oscillation. Multiyear La Niña events in particular may be both predictable at long lead times and favor drought in the bimodal rainfall regions of East Africa. However, SST patterns in the tropical Pacific and adjacent ocean basins often differ substantially between first- and second-year La Niñas, which can change how these events affect regional climate. Here, we demonstrate that multiyear La Niña events favor drought in the Horn of Africa in three consecutive seasons [October–December (OND), March–May (MAM), OND]. But they do not tend to increase the probability of a fourth season of drought owing to the sea surface temperatures and associated atmospheric teleconnections in the MAM long rains season following second-year La Niña events. First-year La Niñas tend to have both greater subsidence over the Horn of Africa, associated with warmer waters in the west Pacific that enhance the Walker circulation, and greater cross-continental moisture transport, associated with a warm tropical Atlantic, as compared to second-year La Niñas. Both the increased subsidence and enhanced cross-continental moisture transport favors drought in the Horn of Africa. Our results provide a physical understanding of the sources and limitations of predictability for using multiyear La Niña forecasts to predict drought in the Horn of Africa.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weston Anderson, weston.anderson@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.49 MB)
Save