Improving Polarimetric Radar-Based Drop Size Distribution Retrieval and Rain Estimation Using a Deep Neural Network

Junho Ho aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Junho Ho in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2585-7572
,
Guifu Zhang aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
,
Petar Bukovcic cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petar Bukovcic in
Current site
Google Scholar
PubMed
Close
,
David B. Parsons aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
,
Feng Xu aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Feng Xu in
Current site
Google Scholar
PubMed
Close
,
Jidong Gao dNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jidong Gao in
Current site
Google Scholar
PubMed
Close
,
Jacob T. Carlin cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jacob T. Carlin in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey C. Snyder dNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junho Ho, jhho0626@ou.edu

Abstract

Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junho Ho, jhho0626@ou.edu
Save
  • Alimissis, A., K. Philippopoulos, C. G. Tzanis, and D. Deligiorgi, 2018: Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ., 191, 205213, https://doi.org/10.1016/j.atmosenv.2018.07.058.

    • Search Google Scholar
    • Export Citation
  • Alzubaidi, L., and Coauthors, 2021: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data, 8, 53, https://doi.org/10.1186/s40537-021-00444-8.

    • Search Google Scholar
    • Export Citation
  • Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, 2021: Enforcing analytic constraints in neural networks emulating physical systems. Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/PhysRevLett.126.098302.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584598, https://doi.org/10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. A. Brandes, and T. J. Schuur, 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973990, https://doi.org/10.1175/2009JAMC2227.1.

    • Search Google Scholar
    • Export Citation
  • Chang-Hoi, H., I. Park, H.-R. Oh, H.-J. Gim, S.-K. Hur, J. Kim, and D.-R. Choi, 2021: Development of a PM2.5 prediction model using a recurrent neural network algorithm for the Seoul metropolitan area, Republic of Korea. Atmos. Environ., 245, 118021, https://doi.org/10.1016/j.atmosenv.2020.118021.

    • Search Google Scholar
    • Export Citation
  • Chen, H., V. Chandrasekar, R. Cifelli, and P. Xie, 2020: A machine learning system for precipitation estimation using satellite and ground radar network observations. IEEE Trans. Geosci. Remote Sens., 58, 982994, https://doi.org/10.1109/TGRS.2019.2942280.

    • Search Google Scholar
    • Export Citation
  • Cui, X., V. Goel, and B. Kingsbury, 2014: Data augmentation for deep neural network acoustic modeling. 2014 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Florence, Italy, IEEE, 5582–5586, https://doi.org/10.1109/ICASSP.2014.6854671.

  • Davenport, F. V., and N. S. Diffenbaugh, 2021: Using machine learning to analyze physical causes of climate change: A case study of U.S. Midwest extreme precipitation. Geophys. Res. Lett., 48, e2021GL093787, https://doi.org/10.1029/2021GL093787.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Habib, E., B. F. Larson, and J. Graschel, 2009: Validation of NEXRAD multisensor precipitation estimates using an experimental dense rain gauge network in South Louisiana. J. Hydrol., 373, 463478, https://doi.org/10.1016/j.jhydrol.2009.05.010.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35, 313, https://doi.org/10.1175/1520-0450(1996)035<0003:PTRSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, J., 2022: Improving drop size distribution retrieval and rain estimation from polarimetric radar data using the deep neural network. M.S. thesis, School of Meteorology, The University of Oklahoma, 77 pp., https://shareok.org/handle/11244/335998.

  • Hsieh, W. C., A. Nenes, R. C. Flagan, J. H. Seinfeld, G. Buzorius, and H. Jonsson, 2009: Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. J. Geophys. Res., 114, D11205, https://doi.org/10.1029/2008JD011387.

    • Search Google Scholar
    • Export Citation
  • Huang, L., J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, 2020: Normalization techniques in training DNNs: Methodology, analysis and application. arXiv, 2009.12836v1, https://arxiv.org/abs/2009.12836.

  • Hubbert, J. C., M. Dixon, S. M. Ellis, and G. Meymaris, 2009: Weather radar ground clutter. Part I: Identification, modeling, and simulation. J. Atmos. Oceanic Technol., 26, 11651180, https://doi.org/10.1175/2009JTECHA1159.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. I., and K. Y. Han, 2020: Urban flood prediction using deep neural network with data augmentation. Water, 12, 899, https://doi.org/10.3390/w12030899.

    • Search Google Scholar
    • Export Citation
  • Kingma, D., and J. Ba, 2017: Adam: A method for stochastic optimization. arXiv, 1412.6980v8, https://arxiv.org/abs/1412.6980v8.

  • Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259270, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kusiak, A., X. Wei, A. P. Verma, and E. Roz, 2013: Modeling and prediction of rainfall using radar reflectivity data: A data-mining approach. IEEE Trans. Geosci. Remote Sens., 51, 23372342, https://doi.org/10.1109/TGRS.2012.2210429.

    • Search Google Scholar
    • Export Citation
  • Lang, R. M., and Coauthors, 2021: Use of machine learning to improve echocardiographic image interpretation workflow: A disruptive paradigm change? J. Amer. Soc. Echocardiogr., 34, 443445, https://doi.org/10.1016/j.echo.2020.11.017.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., S. Kwon, and S.-H. Jung, 2021: Real-time calibration and monitoring of radar reflectivity on nationwide dual-polarization weather radar network. Remote Sens., 13, 2936, https://doi.org/10.3390/rs13152936.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., H. Li, M. Xue, Y. Jung, J. Park, L. Chen, R. Kong, and C.-C. Tong, 2022: Use of a reflectivity operator based on double-moment Thompson microphysics for direct assimilation of radar reflectivity in GSI-based hybrid En3DVar. Mon. Wea. Rev., 150, 907926, https://doi.org/10.1175/MWR-D-21-0040.1.

    • Search Google Scholar
    • Export Citation
  • Lukach, M., L. Foresti, O. Giot, and L. Delobbe, 2017: Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteor. Appl., 24, 250259, https://doi.org/10.1002/met.1623.

    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, M. Xue, J. Gao, and H. D. Reeves, 2019: Variational retrieval of rain microphysics and related parameters from polarimetric radar data with a parameterized operator. J. Atmos. Oceanic Technol., 36, 24832500, https://doi.org/10.1175/JTECH-D-18-0212.1.

    • Search Google Scholar
    • Export Citation
  • Makridakis, S., E. Spiliotis, and V. Assimakopoulos, 2018: Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13, e0194889, https://doi.org/10.1371/journal.pone.0194889.

    • Search Google Scholar
    • Export Citation
  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric radar measurements of tropical rain at a 5-cm wavelength. J. Appl. Meteor., 38, 750765, https://doi.org/10.1175/1520-0450(1999)038<0750:PRMOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCulloch, W. S., and W. Pitts, 1943: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5, 115133, https://doi.org/10.1007/BF02478259.

    • Search Google Scholar
    • Export Citation
  • Meng, Q., W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu, 2019: Convergence analysis of distributed stochastic gradient descent with shuffling. Neurocomputing, 337, 4657, https://doi.org/10.1016/j.neucom.2019.01.037.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Montavon, G., G. B. Orr, and K.-R. Müller, 2012: Neural Networks: Tricks of the Trade. Springer, 769 pp.

  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Murtagh, F., 1991: Multilayer perceptrons for classification and regression. Neurocomputing, 2, 183197, https://doi.org/10.1016/0925-2312(91)90023-5.

    • Search Google Scholar
    • Export Citation
  • Naren Athreyas, K., E. Gunawan, and B. K. Tay, 2020: Estimation of vertical structure of latent heat generated in thunderstorms using CloudSat radar. Meteor. Appl., 27, e1902, https://doi.org/10.1002/met.1902.

    • Search Google Scholar
    • Export Citation
  • Nelson, E. L., T. S. L’Ecuyer, S. M. Saleeby, W. Berg, S. R. Herbener, and S. C. van den Heever, 2016: Toward an algorithm for estimating latent heat release in warm rain systems. J. Atmos. Oceanic Technol., 33, 13091329, https://doi.org/10.1175/JTECH-D-15-0205.1.

    • Search Google Scholar
    • Export Citation
  • Nwankpa, C., W. Ijomah, A. Gachagan, and S. Marshall, 2018: Activation functions: Comparison of trends in practice and research for deep learning. arXiv, 1811.03378v1, https://arxiv.org/abs/1811.03378.

  • Qi, D., and A. J. Majda, 2019: Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA, 117, 5259, https://doi.org/10.1073/pnas.1917285117.

    • Search Google Scholar
    • Export Citation
  • Rajula, H. S. R., G. Verlato, M. Manchia, N. Antonucci, and V. Fanos, 2020: Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina, 56, 455, https://doi.org/10.3390/medicina56090455.

    • Search Google Scholar
    • Export Citation
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 237–258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, P. Bukovčić, J. Zhang, and S. Cocks, 2022: Polarimetric radar quantitative precipitation estimation. Remote Sens., 14, 1695, https://doi.org/10.3390/rs14071695.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Rivas, D., and M. A. Rico-Ramirez, 2022: Calibration of radar differential reflectivity using quasi-vertical profiles. Atmos. Meas. Tech., 15, 503520, https://doi.org/10.5194/amt-15-503-2022.

    • Search Google Scholar
    • Export Citation
  • Sarker, I. H., 2021: Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci., 2, 160, https://doi.org/10.1007/s42979-021-00592-x.

    • Search Google Scholar
    • Export Citation
  • Schultz, M. G., C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari, and S. Stadtler, 2021: Can deep learning beat numerical weather prediction? Philos. Trans. Roy. Soc., 379A, 20200097, https://doi.org/10.1098/rsta.2020.0097.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Shin, K., J. J. Song, W. Bang, and G. W. Lee, 2021: Quantitative precipitation estimates using machine learning approaches with operational dual-polarization radar data. Remote Sens., 13, 694, https://doi.org/10.3390/rs13040694.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szandała, T., 2020: Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired Neurocomputing, A. Bhoi et al., Eds., Springer, 203–224, https://doi.org/10.1007/978-981-15-5495-7_11.

  • Taravat, A., S. Proud, S. Peronaci, F. Del Frate, and N. Oppelt, 2015: Multilayer perceptron neural networks model for Meteosat Second Generation SEVIRI daytime cloud masking. Remote Sens., 7, 15291539, https://doi.org/10.3390/rs70201529.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. A. Marks, J. L. Pippitt, D. B. Wolff, and W. A. Petersen, 2020: Comparison of raindrop size distribution between NASA’s S-band polarimetric radar and two-dimensional video disdrometers. J. Appl. Meteor. Climatol., 59, 517533, https://doi.org/10.1175/JAMC-D-18-0339.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1968: Matrix formulation of bistatic electromagnetic scattering. Rep. MTR-543, 26 pp., https://apps.dtic.mil/sti/tr/pdf/AD0669093.pdf.

  • Wu, C., L. Liu, C. Chen, C. Zhang, G. He, and J. Li, 2021: Challenges of the polarimetric update on operational radars in China—Ground clutter contamination of weather radar observations. Remote Sens., 13, 217, https://doi.org/10.3390/rs13020217.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu, and Z. Jin, 2016: Improved relation classification by deep recurrent neural networks with data augmentation. arXiv, 1601.03651v2, https://arxiv.org/abs/1601.03651.

  • Yang, L., and A. Shami, 2020: On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295316, https://doi.org/10.1016/j.neucom.2020.07.061.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841, https://doi.org/10.1109/36.917906.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63, 12731290, https://doi.org/10.1175/JAS3680.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2019: Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv. Atmos. Sci., 36, 571588, https://doi.org/10.1007/s00376-019-8172-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Gao, and M. Du, 2021: Parameterized forward operators for simulation and assimilation of polarimetric radar data with numerical weather predictions. Adv. Atmos. Sci., 38, 737754, https://doi.org/10.1007/s00376-021-0289-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2020: Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun., 11, 4880, https://doi.org/10.1038/s41467-020-17910-1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Wu, L. Zhang, Y. Xie, Y. Huang, and H. Zheng, 2020: Preliminary study of land–sea microphysics associated with the East Asian summer monsoon rainband and its application to GPM DPR. J. Atmos. Oceanic Technol., 37, 12311249, https://doi.org/10.1175/JTECH-D-19-0059.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. M. Melnikov, and J. K. Carter, 2006: Calibrating differential reflectivity on the WSR-88D. J. Atmos. Oceanic Technol., 23, 944951, https://doi.org/10.1175/JTECH1893.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 959 567 9
Full Text Views 292 203 7
PDF Downloads 309 217 7