Convection-Permitting Simulations of Precipitation over the Peruvian Central Andes: Strong Sensitivity to Planetary Boundary Layer Parameterization

Yongjie Huang aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yongjie Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7883-8768
,
Ming Xue aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
Xiao-Ming Hu aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xiao-Ming Hu in
Current site
Google Scholar
PubMed
Close
,
Elinor Martin bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
cSouth Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elinor Martin in
Current site
Google Scholar
PubMed
Close
,
Hector Mayol Novoa dUniversidad Nacional de San Agustín de Arequipa, Arequipa, Perú

Search for other papers by Hector Mayol Novoa in
Current site
Google Scholar
PubMed
Close
,
Renee A. McPherson cSouth Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma
eDepartment of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

Search for other papers by Renee A. McPherson in
Current site
Google Scholar
PubMed
Close
,
Andres Perez dUniversidad Nacional de San Agustín de Arequipa, Arequipa, Perú

Search for other papers by Andres Perez in
Current site
Google Scholar
PubMed
Close
, and
Isaac Yanqui Morales dUniversidad Nacional de San Agustín de Arequipa, Arequipa, Perú

Search for other papers by Isaac Yanqui Morales in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional climate dynamical downscaling at convection-permitting resolutions is now practical and has the potential to significantly improve over coarser-resolution simulations, but the former is not necessarily free of systematic biases. The evaluation and optimization of model configurations are therefore important. Twelve simulations at a grid spacing of 3 km using the WRF Model with different microphysics, planetary boundary layer (PBL), and land surface model (LSM) schemes are performed over the Peruvian central Andes during the austral summer, a region with particularly complex terrain. The simulated precipitation is evaluated using rain gauge data and three gridded precipitation datasets. All simulations correctly capture four precipitation hotspots associated with prevailing winds and terrain features along the east slope of the Andes, though they generally overestimate the precipitation intensity. The simulation using Thompson microphysics, Asymmetric Convection Model version 2 (ACM2) PBL, and Noah LSM schemes has the smallest bias. The simulated precipitation is most sensitive to PBL, followed by microphysics, and least sensitive to LSM schemes. The simulated precipitation is generally stronger in simulations using the YSU rather than the MYNN and ACM2 schemes. All simulations successfully capture the diurnal precipitation peak time mainly in the afternoon over the Peruvian central Andes and in the early morning along the east slope. However, there are significant differences over the western Amazon basin, where the precipitation peak occurs primarily in the late afternoon. Simulations using YSU exhibit a 4–8-h delay in the precipitation peak over the western Amazon basin, consistent with their stronger and more persistent low-level jets. These results provide guidance on the optimal configuration of a dynamical downscaling of global climate projections for the Peruvian central Andes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu

Abstract

Regional climate dynamical downscaling at convection-permitting resolutions is now practical and has the potential to significantly improve over coarser-resolution simulations, but the former is not necessarily free of systematic biases. The evaluation and optimization of model configurations are therefore important. Twelve simulations at a grid spacing of 3 km using the WRF Model with different microphysics, planetary boundary layer (PBL), and land surface model (LSM) schemes are performed over the Peruvian central Andes during the austral summer, a region with particularly complex terrain. The simulated precipitation is evaluated using rain gauge data and three gridded precipitation datasets. All simulations correctly capture four precipitation hotspots associated with prevailing winds and terrain features along the east slope of the Andes, though they generally overestimate the precipitation intensity. The simulation using Thompson microphysics, Asymmetric Convection Model version 2 (ACM2) PBL, and Noah LSM schemes has the smallest bias. The simulated precipitation is most sensitive to PBL, followed by microphysics, and least sensitive to LSM schemes. The simulated precipitation is generally stronger in simulations using the YSU rather than the MYNN and ACM2 schemes. All simulations successfully capture the diurnal precipitation peak time mainly in the afternoon over the Peruvian central Andes and in the early morning along the east slope. However, there are significant differences over the western Amazon basin, where the precipitation peak occurs primarily in the late afternoon. Simulations using YSU exhibit a 4–8-h delay in the precipitation peak over the western Amazon basin, consistent with their stronger and more persistent low-level jets. These results provide guidance on the optimal configuration of a dynamical downscaling of global climate projections for the Peruvian central Andes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu
Save
  • Adinolfi, M., M. Raffa, A. Reder, and P. Mercogliano, 2021: Evaluation and expected changes of summer precipitation at convection permitting scale with COSMO-CLM over Alpine space. Atmosphere, 12, 54, https://doi.org/10.3390/atmos12010054.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., M. S. Reboita, R. P. da Rocha, and M. Llopart, 2019: The state of the art and fundamental aspects of regional climate modeling in South America. Ann. N. Y. Acad. Sci., 1436, 98120, https://doi.org/10.1111/nyas.13932.

    • Search Google Scholar
    • Export Citation
  • Avila-Diaz, A., G. Abrahão, F. Justino, R. Torres, and A. Wilson, 2020: Extreme climate indices in Brazil: Evaluation of downscaled Earth system models at high horizontal resolution. Climate Dyn., 54, 50655088, https://doi.org/10.1007/s00382-020-05272-9.

    • Search Google Scholar
    • Export Citation
  • Aybar, C., C. Fernández, A. Huerta, W. Lavado, F. Vega, and O. Felipe-Obando, 2020: Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J., 65, 770785, https://doi.org/10.1080/02626667.2019.1649411.

    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Search Google Scholar
    • Export Citation
  • Berthou, S., D. P. Rowell, E. J. Kendon, M. J. Roberts, R. A. Stratton, J. A. Crook, and C. Wilcox, 2019: Improved climatological precipitation characteristics over West Africa at convection-permitting scales. Climate Dyn., 53, 19912011, https://doi.org/10.1007/s00382-019-04759-4.

    • Search Google Scholar
    • Export Citation
  • Berthou, S., E. J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Schär, and G. Fosser, 2020: Pan-European climate at convection-permitting scale: A model intercomparison study. Climate Dyn., 55, 3559, https://doi.org/10.1007/s00382-018-4114-6.

    • Search Google Scholar
    • Export Citation
  • Bettolli, M. L., and Coauthors, 2021: The CORDEX flagship pilot study in southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Climate Dyn., 56, 15891608, https://doi.org/10.1007/s00382-020-05549-z.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, S. Berthou, G. Fosser, E. Lewis, and H. J. Fowler, 2020: Europe-wide precipitation projections at convection permitting scale with the Unified Model. Climate Dyn., 55, 409428, https://doi.org/10.1007/s00382-020-05192-8.

    • Search Google Scholar
    • Export Citation
  • Chavez, S. P., and K. Takahashi, 2017: Orographic rainfall hot spots in the Andes–Amazon transition according to the TRMM precipitation radar and in situ data. J. Geophys. Res. Atmos., 122, 58705882, https://doi.org/10.1002/2016JD026282.

    • Search Google Scholar
    • Export Citation
  • Chavez, S. P., Y. Silva, and A. P. Barros, 2020: High-elevation monsoon precipitation processes in the central Andes of Peru. J. Geophys. Res. Atmos., 125, e2020JD032947, https://doi.org/10.1029/2020JD032947.

    • Search Google Scholar
    • Export Citation
  • Chen, G., 2020: Diurnal cycle of the Asian summer monsoon: Air pump of the second kind. J. Climate, 33, 17471775, https://doi.org/10.1175/JCLI-D-19-0210.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and Coauthors, 2022: Cross-examining precipitation products by rain gauge, remote sensing, and WRF simulations over a South American region across the Pacific coast and Andes. Atmosphere, 13, 1666, https://doi.org/10.3390/atmos13101666.

    • Search Google Scholar
    • Export Citation
  • Chimborazo, O., and M. Vuille, 2021: Present-day climate and projected future temperature and precipitation changes in Ecuador. Theor. Appl. Climatol., 143, 15811597, https://doi.org/10.1007/s00704-020-03483-y.

    • Search Google Scholar
    • Export Citation
  • Ciarlo, J. M., and Coauthors, 2020: A new spatially distributed added value index for regional climate models: The EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dyn., 57, 14031424, https://doi.org/10.1007/s00382-020-05400-5.

    • Search Google Scholar
    • Export Citation
  • Coppola, E., and Coauthors, 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dyn., 55, 334, https://doi.org/10.1007/s00382-018-4521-8.

    • Search Google Scholar
    • Export Citation
  • da Silva, M. L., C. P. de Oliveira, C. M. Santos e Silva, and J. M. de Araújo, 2023: Dynamic downscaling of climate simulations and projected changes in tropical South America using RegCM4.7. Int. J. Climatol., 43, 33913415, https://doi.org/10.1002/joc.8035.

    • Search Google Scholar
    • Export Citation
  • de Sousa Afonso, J. M., D. A. Vila, M. A. Gan, D. P. Quispe, N. de Jesus da Costa Barreto, J. H. Huamán Chinchay, and R. S. A. Palharini, 2020: Precipitation diurnal cycle assessment of satellite-based estimates over Brazil. Remote Sens., 12, 2339, https://doi.org/10.3390/rs12142339.

    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., C. M. Ichoku, G. J. Huffman, K. I. Mohr, J. S. Selker, N. van de Giesen, R. Hochreutener, and F. O. Annor, 2017: Validation of IMERG precipitation in Africa. J. Hydrometeor., 18, 28172825, https://doi.org/10.1175/JHM-D-17-0139.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., S. Chavez, J. Ronchail, C. Junquas, K. Takahashi, and W. Lavado, 2015: Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour. Res., 51, 34593475, https://doi.org/10.1002/2014WR016273.

    • Search Google Scholar
    • Export Citation
  • Falco, M., A. F. Carril, L. Z. X. Li, C. Cabrelli, and C. G. Menéndez, 2020: The potential added value of regional climate models in South America using a multiresolution approach. Climate Dyn., 54, 15531569, https://doi.org/10.1007/s00382-019-05073-9.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, https://doi.org/10.1175/2011BAMS3061.1.

    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, https://doi.org/10.1007/s00382-014-2242-1.

    • Search Google Scholar
    • Export Citation
  • Fosser, G., E. J. Kendon, D. Stephenson, and S. Tucker, 2020: Convection-permitting models offer promise of more certain extreme rainfall projections. Geophys. Res. Lett., 47, e2020GL088151, https://doi.org/10.1029/2020GL088151.

    • Search Google Scholar
    • Export Citation
  • Fumière, Q., M. Déqué, O. Nuissier, S. Somot, A. Alias, C. Caillaud, O. Laurantin, and Y. Seity, 2020: Extreme rainfall in Mediterranean France during the fall: Added value of the CNRM-AROME convection-permitting regional climate model. Climate Dyn., 55, 7791, https://doi.org/10.1007/s00382-019-04898-8.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Xu, Z. Zhao, J. S. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173185, https://doi.org/10.1007/s00704-005-0214-4.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., F. Chen, and Y. Jiang, 2020: Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction. J. Hydrometeor., 21, 15311548, https://doi.org/10.1175/JHM-D-19-0277.1.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., A. M. Haberlie, and W. S. Ashley, 2023: Convection-permitting simulations of historical and possible future climate over the contiguous United States. Climate Dyn., 60, 109126, https://doi.org/10.1007/s00382-022-06306-0.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Regional climate modeling: Status and perspectives. J. Phys. IV, 139, 101118, https://doi.org/10.1051/jp4:2006139008.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 56965723, https://doi.org/10.1029/2018JD030094.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 23252347, https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • González-Rojí, S. J., M. Messmer, C. C. Raible, and T. F. Stocker, 2022: Sensitivity of precipitation in the highlands and lowlands of Peru to physics parameterization options in WRFV3.8.1. Geosci. Model Dev., 15, 28592879, https://doi.org/10.5194/gmd-15-2859-2022.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., J. Fang, X. Sun, Y. Yang, and J. Tang, 2019: Sensitivity of summer precipitation simulation to microphysics parameterization over eastern China: Convection-permitting regional climate simulation. J. Geophys. Res. Atmos., 124, 91839204, https://doi.org/10.1029/2019JD030295.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., J. Fang, X. Sun, J. Tang, Y. Yang, and J. Tang, 2020: Decadal long convection-permitting regional climate simulations over eastern China: Evaluation of diurnal cycle of precipitation. Climate Dyn., 54, 13291349, https://doi.org/10.1007/s00382-019-05061-z.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Jr., and Coauthors, 2016: WCRP Coordinated Regional Downscaling Experiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev., 9, 40874095, https://doi.org/10.5194/gmd-9-4087-2016.

    • Search Google Scholar
    • Export Citation
  • He, C., F. Chen, M. Barlage, C. Liu, A. Newman, W. Tang, K. Ikeda, and R. Rasmussen, 2019: Can convection-permitting modeling provide decent precipitation for offline high-resolution snowpack simulations over mountains? J. Geophys. Res. Atmos., 124, 12 63112 654, https://doi.org/10.1029/2019JD030823.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodnebrog, Ø., B. M. Steensen, L. Marelle, K. Alterskjaer, S. B. Dalsøren, and G. Myhre, 2022: Understanding model diversity in future precipitation projections for South America. Climate Dyn., 58, 13291347, https://doi.org/10.1007/s00382-021-05964-w.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hu, X.-M., M. Xue, R. A. McPherson, E. Martin, D. H. Rosendahl, and L. Qiao, 2018: Precipitation dynamical downscaling over the Great Plains. J. Adv. Model. Earth Syst., 10, 421447, https://doi.org/10.1002/2017MS001154.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., and Coauthors, 2023: Effects of lower troposphere vertical mixing on simulated clouds and precipitation over the Amazon during the wet season. J. Geophys. Res. Atmos., 128, e2023JD038553, https://doi.org/10.1029/2023JD038553.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Wang, L. Xue, X. Wei, L. Zhang, and H. Li, 2020: Comparison of three microphysics parameterization schemes in the WRF Model for an extreme rainfall event in the coastal metropolitan city of Guangzhou, China. Atmos. Res., 240, 104939, https://doi.org/10.1016/j.atmosres.2020.104939.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., E. Stocker, D. Bolvin, E. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 1 day 0.1 degree × 0.1 degree, V06. Goddard Earth Sciences Data and Information Services Center, accessed 12 November 2020, https://doi.org/10.5067/GPM/IMERGDF/DAY/06.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2019: Recent changes in the South America low-level jet. npj Climate Atmos. Sci., 2, 20, https://doi.org/10.1038/s41612-019-0077-5.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., and Coauthors, 2020: The CMIP6 data request (DREQ, version 01.00. 31). Geosci. Model Dev., 13, 201224, https://doi.org/10.5194/gmd-13-201-2020.

    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J.-C. Espinoza, S. Chávez, J.-E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Search Google Scholar
    • Export Citation
  • Junquas, C., and Coauthors, 2022: Regional climate modeling of the diurnal cycle of precipitation and associated atmospheric circulation patterns over an Andean glacier region (Antisana, Ecuador). Climate Dyn., 58, 30753104, https://doi.org/10.1007/s00382-021-06079-y.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 55535571, https://doi.org/10.1175/2007JCLI1482.1.

    • Search Google Scholar
    • Export Citation
  • Karki, R., S. ul Hasson, L. Gerlitz, U. Schickhoff, T. Scholten, and J. Böhner, 2017: Quantifying the added value of convection-permitting climate simulations in complex terrain: A systematic evaluation of WRF over the Himalayas. Earth Syst. Dyn., 8, 507528, https://doi.org/10.5194/esd-8-507-2017.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., R. A. Stratton, S. Tucker, J. H. Marsham, S. Berthou, D. P. Rowell, and C. A. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., A. Prein, C. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc., A379, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Search Google Scholar
    • Export Citation
  • Kouadio, K., S. Bastin, A. Konare, and V. O. Ajayi, 2020: Does convection-permitting simulate better rainfall distribution and extreme over Guinean coast and surroundings? Climate Dyn., 55, 153174, https://doi.org/10.1007/s00382-018-4308-y.

    • Search Google Scholar
    • Export Citation
  • Lavin-Gullon, A., M. Feijoó, S. Solman, J. Fernández, R. P. da Rocha, and M. L. Bettolli, 2021: Synoptic forcing associated with extreme precipitation events over southeastern South America as depicted by a CORDEX FPS set of convection-permitting RCMs. Climate Dyn., 56, 31873203, https://doi.org/10.1007/s00382-021-05637-8.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995.

    • Search Google Scholar
    • Export Citation
  • Li, P., K. Furtado, T. Zhou, H. Chen, J. Li, Z. Guo, and C. Xiao, 2020: The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales. Climate Dyn., 55, 131151, https://doi.org/10.1007/s00382-018-4368-z.

    • Search Google Scholar
    • Export Citation
  • Li, P., K. Furtado, T. Zhou, H. Chen, and J. Li, 2021: Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Quart. J. Roy. Meteor. Soc., 147, 341362, https://doi.org/10.1002/qj.3921.

    • Search Google Scholar
    • Export Citation
  • Lind, P., and Coauthors, 2020: Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia. Climate Dyn., 55, 18931912, https://doi.org/10.1007/s00382-020-05359-3.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., R. Laprise, and K. Winger, 2017: Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Climate Dyn., 48, 26112633, https://doi.org/10.1007/s00382-016-3227-z.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., D. Argüeso, E. Brisson, Y. Tramblay, P. Berg, A. Lemonsu, S. Kotlarski, and C. Caillaud, 2021: Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdiscip. Rev.: Climate Change, 12, e731, https://doi.org/10.1002/wcc.731.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., M. W. Douglas, and P. L. Silva Dias, 2002: The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. J. Geophys. Res., 107, 8079, https://doi.org/10.1029/2001JD001188.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2010: Future change of climate in South America in the late twenty-first century: Intercomparison of scenarios from three regional climate models. Climate Dyn., 35, 10731097,