Grounding our Understanding of the Impacts of Boreal Forest Expansion on Shallow Cumulus Clouds with a Simple Modeling Framework

Sam Pennypacker aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Sam Pennypacker in
Current site
Google Scholar
PubMed
Close
and
Robert Wood aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The expansion of the boreal forest poleward is a potentially important driver of feedbacks between the land surface and Arctic climate. A growing body of work has highlighted the importance of differences in evaporative resistance between different possible future Arctic land covers, which in turn alters humidity and cloudiness in the boundary layer, for these feedbacks. While thus far this problem has been studied primarily with complex Earth system models, we turn to a locally focused, idealized model capable of diagnosing and testing the sensitivity of first-order processes connecting vegetation, the atmospheric boundary layer, and low clouds in this critical region. This allows us to benchmark the mechanisms and results at the center of predictions from larger-scale simulations. A surface dominated by broadleaf trees, characterized by higher albedo and lower surface evaporative resistance, drives cooling and moistening of the boundary layer relative to a surface of needleleaf trees, characterized by lower albedo and higher surface evaporative resistance. Differences in evaporative resistance between these hypothetical Arctic vegetation covers are of equal importance to changes in albedo for the initial response of the boundary layer to boreal expansion, even with our idealized approach. However, compensation between the elevation of the lifting condensation level (LCL) and more rapid growth of the mixed layer over higher evaporative resistance surfaces can minimize changes in the favorability of shallow clouds over different land cover types under some conditions. We then perform two tests on the sensitivity of this compensating effect, to changes in water availability, represented first by a reduction in boundary layer humidity and then by both a reduction in humidity and soil moisture available to our vegetation surface. Finally, given the importance of this potential LCL–mixed-layer height compensation in our idealized modeling results, we look to determine its relevance in observational data from a field campaign in boreal Finland. These observations do confirm that such a coupling plays an important role in cumulus-topped boundary layers over a needleleaf forest surface. While our results confirm some underlying mechanisms at the center of prior work with Earth system models, they also provide motivation for future work to constrain the impact of boreal forest expansion. This will include both large eddy simulations to examine the impact of processes and feedbacks not resolved by a mixed-layer model, as well as a more systematic evaluation and comparison of relevant observations at the site in Finland and sites from prior boreal field campaigns.

Significance Statement

Clouds and vegetation are both important components of the climate system that interact across a range of scales. These interactions are central to understanding how changes at the land surface feedback on climate. For example, if a forest expands or recedes, diagnosing how that will impact clouds will determine whether you predict warming or cooling temperatures from that shift in the forest area. These predictions are often made with complex Earth system models, but we look to a more idealized representation of the land–atmosphere system to diagnose how shallow clouds should respond to changes in surface properties with different scenarios of boreal forest expansion at a more foundational level. This both grounds our understanding of previous analysis and provides helpful direction for future studies of this relevant and impactful land cover change.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sam Pennypacker, spenny@uw.edu

Abstract

The expansion of the boreal forest poleward is a potentially important driver of feedbacks between the land surface and Arctic climate. A growing body of work has highlighted the importance of differences in evaporative resistance between different possible future Arctic land covers, which in turn alters humidity and cloudiness in the boundary layer, for these feedbacks. While thus far this problem has been studied primarily with complex Earth system models, we turn to a locally focused, idealized model capable of diagnosing and testing the sensitivity of first-order processes connecting vegetation, the atmospheric boundary layer, and low clouds in this critical region. This allows us to benchmark the mechanisms and results at the center of predictions from larger-scale simulations. A surface dominated by broadleaf trees, characterized by higher albedo and lower surface evaporative resistance, drives cooling and moistening of the boundary layer relative to a surface of needleleaf trees, characterized by lower albedo and higher surface evaporative resistance. Differences in evaporative resistance between these hypothetical Arctic vegetation covers are of equal importance to changes in albedo for the initial response of the boundary layer to boreal expansion, even with our idealized approach. However, compensation between the elevation of the lifting condensation level (LCL) and more rapid growth of the mixed layer over higher evaporative resistance surfaces can minimize changes in the favorability of shallow clouds over different land cover types under some conditions. We then perform two tests on the sensitivity of this compensating effect, to changes in water availability, represented first by a reduction in boundary layer humidity and then by both a reduction in humidity and soil moisture available to our vegetation surface. Finally, given the importance of this potential LCL–mixed-layer height compensation in our idealized modeling results, we look to determine its relevance in observational data from a field campaign in boreal Finland. These observations do confirm that such a coupling plays an important role in cumulus-topped boundary layers over a needleleaf forest surface. While our results confirm some underlying mechanisms at the center of prior work with Earth system models, they also provide motivation for future work to constrain the impact of boreal forest expansion. This will include both large eddy simulations to examine the impact of processes and feedbacks not resolved by a mixed-layer model, as well as a more systematic evaluation and comparison of relevant observations at the site in Finland and sites from prior boreal field campaigns.

Significance Statement

Clouds and vegetation are both important components of the climate system that interact across a range of scales. These interactions are central to understanding how changes at the land surface feedback on climate. For example, if a forest expands or recedes, diagnosing how that will impact clouds will determine whether you predict warming or cooling temperatures from that shift in the forest area. These predictions are often made with complex Earth system models, but we look to a more idealized representation of the land–atmosphere system to diagnose how shallow clouds should respond to changes in surface properties with different scenarios of boreal forest expansion at a more foundational level. This both grounds our understanding of previous analysis and provides helpful direction for future studies of this relevant and impactful land cover change.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sam Pennypacker, spenny@uw.edu
Save
  • Angevine, W. M., A. W. Grimsdell, L. M. Hartten, and A. C. Delany, 1998: The flatland boundary layer experiments. Bull. Amer. Meteor. Soc., 79, 419432, https://doi.org/10.1175/1520-0477(1998)079<0419:TFBLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., J. Fruntke, and R. Engelmann, 2010: Updraft and downdraft characterization with Doppler lidar: Cloud-free versus cumuli-topped mixed layer. Atmos. Chem. Phys., 10, 78457858, https://doi.org/10.5194/acp-10-7845-2010.

    • Search Google Scholar
    • Export Citation
  • Asner, G. P., J. M. O. Scurlock, and J. A. Hicke, 2003: Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Biol. Biogeogr., 12, 191205, https://doi.org/10.1046/j.1466-822X.2003.00026.x.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and S. Ma, 2013: How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus, 65B, 19994, https://doi.org/10.3402/tellusb.v65i0.19994.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., C. A. Vogel, and B. Hall, 1997: Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res., 102, 28 93928 951, https://doi.org/10.1029/96JD03325.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., and A. K. Betts, 1997: Radiosonde boundary layer budgets above a boreal forest. J. Geophys. Res., 102, 29 20529 212, https://doi.org/10.1029/97JD01105.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21, 33443358, https://doi.org/10.1175/2007JCLI2266.1.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 1999: Self-beneficial effects of vegetation on climate in an ocean-atmosphere general circulation model. Geophys. Res. Lett., 26, 14571460, https://doi.org/10.1029/1999GL900283.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 90128 909, https://doi.org/10.1029/96JD03876.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 10911108, https://doi.org/10.1175/1520-0469(1998)055<1091:FSCASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, and J. H. McCaughey, 2001: Near-surface climate in the boreal forest. J. Geophys. Res., 106, 33 52933 541, https://doi.org/10.1029/2001JD900047.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. L. Desjardins, and D. Worth, 2007: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agric. For. Meteor., 142, 156169, https://doi.org/10.1016/j.agrformet.2006.08.020.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. L. Desjardins, and D. Worth, 2013: Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 89358953, https://doi.org/10.1002/jgrd.50593.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. L. Desjardins, A. C. M. Beljaars, and A. Tawfik, 2015: Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front. Earth Sci., 3, 13, https://doi.org/10.3389/feart.2015.00013.

    • Search Google Scholar
    • Export Citation
  • Boers, R., E. W. Eloranta, and R. L. Coulter, 1984: Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247266, https://doi.org/10.1175/1520-0450(1984)023<0247:LOOMLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2016: Ecological Climatology: Concepts and Applications. 3rd ed. Cambridge University Press, 692 pp.

  • Bonan, G. B., D. Pollard, and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718, https://doi.org/10.1038/359716a0.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., E. G. Patton, J. J. Finnigan, D. D. Baldocchi, and I. N. Harman, 2021: Moving beyond the incorrect but useful paradigm: Reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes—A review. Agric. For. Meteor., 306, 108435, https://doi.org/10.1016/j.agrformet.2021.108435.

    • Search Google Scholar
    • Export Citation
  • Bosman, P. J. M., C. C. van Heerwaarden, and A. J. Teuling, 2019: Sensible heating as a potential mechanism for enhanced cloud formation over temperate forest. Quart. J. Roy. Meteor. Soc., 145, 450468, https://doi.org/10.1002/qj.3441.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Casso-Torralba, P., J. Vilá-Guerau de Arellano, F. Bosveld, M. R. Soler, A. Vermeulen, C. Werner, and E. Moors, 2008: Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. J. Geophys. Res., 113, D12119, https://doi.org/10.1029/2007JD009583.

    • Search Google Scholar
    • Export Citation
  • Chae, Y., S. M. Kang, S.-J. Jeong, B. Kim, and D. M. W. Frierson, 2015: Arctic greening can cause earlier seasonality of Arctic amplification. Geophys. Res. Lett., 42, 536541, https://doi.org/10.1002/2014GL061841.

    • Search Google Scholar
    • Export Citation
  • Chambers, S. D., and F. S. Chapin III, 2003: Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate. J. Geophys. Res., 108, 8145, https://doi.org/10.1029/2001JD000530.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, and Coauthors, 2000: Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol., 6, 211223, https://doi.org/10.1046/j.1365-2486.2000.06022.x.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660, https://doi.org/10.1126/science.1117368.

    • Search Google Scholar
    • Export Citation
  • Cho, M.-H., A.-R. Yang, E.-H. Baek, S. M. Kang, S.-J. Jeong, J. Y. Kim, and B.-M. Kim, 2018: Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions. Climate Dyn., 50, 37453755, https://doi.org/10.1007/s00382-017-3840-5.

    • Search Google Scholar
    • Export Citation
  • Chu, H., and Coauthors, 2018: Temporal dynamics of aerodynamic canopy height derived from eddy covariance momentum flux data across North American flux networks. Geophys. Res. Lett., 45, 92759287, https://doi.org/10.1029/2018GL079306.

    • Search Google Scholar
    • Export Citation
  • Combe, M., J. Vilà-Guerau de Arellano, H. G. Ouwersloot, C. M. J. Jacobs, and W. Peters, 2015: Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer. Biogeosciences, 12, 103123, https://doi.org/10.5194/bg-12-103-2015.

    • Search Google Scholar
    • Export Citation
  • Davis, K. J., D. H. Lenschow, S. P. Oncley, C. Kiemle, G. Ehret, A. Giez, and J. Mann, 1997: Role of entrainment in surface-atmosphere interactions over the boreal forest. J. Geophys. Res., 102, 29 21929 230, https://doi.org/10.1029/97JD02236.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2014: Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J. Climate, 27, 23862404, https://doi.org/10.1175/JCLI-D-13-00352.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and L. Mahrt, 1994: Daytime evolution of relative humidity at the boundary layer top. Mon. Wea. Rev., 122, 27092721, https://doi.org/10.1175/1520-0493(1994)122<2709:DEORHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falloon, P. D., R. Dankers, R. A. Betts, C. D. Jones, B. B. B. Booth, and F. H. Lambert, 2012: Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model. Biogeosciences, 9, 47394756, https://doi.org/10.5194/bg-9-4739-2012.

    • Search Google Scholar
    • Export Citation
  • Fisch, G., A. D. Culf, and C. A. Nobre, 1996: Modelling convective boundary layer growth in Rondônia. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley and Sons, 425–435.

  • Fitzjarrald, D. R., and K. E. Moore, 1994: Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland. J. Geophys. Res., 99, 18991917, https://doi.org/10.1029/93JD01019.

    • Search Google Scholar
    • Export Citation
  • Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation-atmosphere feedbacks. J. Climate, 14, 180197, https://doi.org/10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R., R. Jacob, and J. Kutzbach, 2005: Coupled atmosphere-ocean-vegetation simulations for modern and mid-Holocene climates: Role of extratropical vegetation cover feedbacks. Climate Dyn., 25, 755776, https://doi.org/10.1007/s00382-005-0054-z.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 336 pp.

  • Garratt, J. R., L. Rotstayn, and P. Krummel, 2002: The atmospheric boundary layer in the CSIRO global climate model: Simulations versus observations. Climate Dyn., 19, 397415, https://doi.org/10.1007/s00382-002-0233-0.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin, 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329, https://doi.org/10.1016/j.agrformet.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J., 2016: High spectral resolution lidar instrument handbook. Tech. Rep. DOE/SC-ARM-TR-157, 17 pp., https://www.arm.gov/publications/tech_reports/handbooks/hsrl_handbook.pdf.

  • Gryning, S.-E., and E. Batchvarova, 1999: Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer. Agric. For. Meteor., 9899, 159167, https://doi.org/10.1016/S0168-1923(99)00095-7.

    • Search Google Scholar
    • Export Citation
  • Horn, G. L., H. G. Ouwersloot, J. Vilà-Guerau de Arellano, and M. Sikma, 2015: Cloud shading effects on characteristic boundary-layer length scales. Bound.-Layer Meteor., 157, 237263, https://doi.org/10.1007/s10546-015-0054-4.

    • Search Google Scholar
    • Export Citation
  • Janssen, R. H. H., J. Vilà-Guerau de Arellano, L. N. Ganzeveld, P. Kabat, J. L. Jimenez, D. K. Farmer, C. C. van Heerwaarden, and I. Mammarella, 2012: Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution. Atmos. Chem. Phys., 12, 68276843, https://doi.org/10.5194/acp-12-6827-2012.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc., B273, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jeong, S.-J., C.-H. Ho, T.-W. Park, J. Kim, and S. Levis, 2011: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Climate Dyn., 37, 821833, https://doi.org/10.1007/s00382-010-0827-x.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J. E., M. M. Laguë, S. Pennypacker, E. Dawson, and A. L. S. Swann, 2020: Evaporative resistance is of equal importance as surface albedo in high-latitude surface temperatures due to cloud feedbacks. Geophys. Res. Lett., 47, e2019GL085663, https://doi.org/10.1029/2019GL085663.

    • Search Google Scholar
    • Export Citation
  • Kyrouac, J., and Y. Shi, 2011: ARM surface meteorology systems handbook. Tech. Rep. DOE/SC-ARM/TR-086, 19 pp., https://www.arm.gov/publications/tech_reports/handbooks/met_handbook.pdf.

  • Laguë, M. M., and A. L. S. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., G. B. Bonan, and A. L. S. Swann, 2019: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system. J. Climate, 32, 57255744, https://doi.org/10.1175/JCLI-D-18-0812.1.

    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., Y. Zhang, and S. A. Klein, 2018: Observed boundary layer controls on shallow cumulus at the ARM Southern Great Plains site. J. Atmos. Sci., 75, 22352255, https://doi.org/10.1175/JAS-D-17-0244.1.

    • Search Google Scholar
    • Export Citation
  • Lin, W., and Coauthors, 2015: RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus. J. Geophys. Res. Atmos., 120, 60156033, https://doi.org/10.1002/2014JD022524.

    • Search Google Scholar
    • Export Citation
  • Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin III, 2005: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res., 110, D13101, https://doi.org/10.1029/2004JD005158.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., and E. G. Patton, 2014: Surface energy balance and buoyancy response to shallow cumulus shading. J. Atmos. Sci., 71, 665682, https://doi.org/10.1175/JAS-D-13-0145.1.

    • Search Google Scholar
    • Export Citation
  • Manoli, G., J.-C. Domec, K. Novick, A. C. Oishi, A. Noormets, M. Marani, and G. Katul, 2016: Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern U.S. pine plantations. Global Change Biol., 22, 22382254, https://doi.org/10.1111/gcb.13221.

    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., and T. W. Spriggs, 1987: An evaluation of the Priestley and Taylor equation and the complementary relationship using results from a mixed-layer model of the convective boundary layer. IAHS Publ., 177, 89104.

    • Search Google Scholar
    • Export Citation
  • McNicholas, C., and D. D. Turner, 2014: Characterizing the convective boundary layer turbulence with a high spectral resolution lidar research. J. Geophys. Res. Atmos., 119, 12 91012 927, https://doi.org/10.1002/2014JD021867.

    • Search Google Scholar
    • Export Citation
  • Moore, K. E., D. R. Fitzjarrald, R. K. Sakai, and J. M. Freedman, 2000: Growing season water balance at a boreal jack pine forest. Water Resour. Res., 36, 483493, https://doi.org/10.1029/1999WR900275.

    • Search Google Scholar
    • Export Citation
  • Morris, V., 2005: Total Sky Imager (TSI) instrument handbook. Tech. Rep. ARM TR-017, U.S. Department of Energy, 12 pp., https://www.arm.gov/publications/tech_reports/handbooks/tsi_handbook.pdf.

  • Münkel, C., and R. Roininen, 2010: Automatic monitoring of boundary layer structures with ceilometers. Tech. Rep. 184/2010, Vaisala, 3 pp., https://www.vaisala.com/sites/default/files/documents/vn184_07_AutomaticMonitoringofBoundaryLayerStructureswithCeilometers.pdf.

  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, https://doi.org/10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., https://doi.org/10.5065/wgtk-4g06.

  • Neggers, R., B. Stevens, and J. D. Neelin, 2006: A simple equilibrium model for shallow-cumulus-topped mixed layers. Theor. Comput. Fluid Dyn., 20, 305322, https://doi.org/10.1007/s00162-006-0030-1.

    • Search Google Scholar
    • Export Citation
  • Novick, K. A., and Coauthors, 2016: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Climate Change, 6, 10231027, https://doi.org/10.1038/nclimate3114.

    • Search Google Scholar
    • Export Citation
  • Pedruzo-Bagazgoitia, X., H. G. Ouwersloot, M. Sikma, C. C. van Heerwaarden, C. M. J. Jacobs, and J. Vilá-Guerau de Arellano, 2017: Direct and diffuse radiation in the shallow cumulus-vegetation system: Enhanced and decreased evapotranspiration regimes. J. Hydrometeor., 18, 17311748, https://doi.org/10.1175/JHM-D-16-0279.1.

    • Search Google Scholar
    • Export Citation
  • Petäjä, T., and Coauthors, 2016: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 97, 19091928, https://doi.org/10.1175/BAMS-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.-Layer Meteor., 71, 211216, https://doi.org/10.1007/BF00709229.

    • Search Google Scholar
    • Export Citation
  • Royer, D. L., C. P. Osborne, and D. J. Beerling, 2005: Contrasting seasonal patterns of carbon gain in evergreen and deciduous trees of ancient polar forests. Paleobiology, 31, 141150, https://www.jstor.org/stable/4096988.

    • Search Google Scholar
    • Export Citation
  • Rupp, T. S., F. S. Chapin III, and A. M. Starfield, 2000: Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north-west Alaska. Global Change Biol., 6, 541555, https://doi.org/10.1046/j.1365-2486.2000.00337.x.

    • Search Google Scholar
    • Export Citation
  • Scarino, A. J., and Coauthors, 2014: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. Atmos. Chem. Phys., 14, 55475560, https://doi.org/10.5194/acp-14-5547-2014.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res., 102, 28 73128 769, https://doi.org/10.1029/97JD03300.

    • Search Google Scholar
    • Export Citation
  • Sikma, M., and J. Vilà-Guerau de Arellano, 2019: Substantial reductions in cloud cover and moisture transport by dynamic plant responses. Geophys. Res. Lett., 46, 18701878, https://doi.org/10.1029/2018GL081236.

    • Search Google Scholar
    • Export Citation
  • Sikma, M., H. G. Ouwersloot, X. Pedruzo-Bagazgoitia, C. C. van Heerwaarden, and J. Vilà-Guerau de Arellano, 2018: Interactions between vegetation, atmospheric turbulence and clouds under a wide range of background wind conditions. Agric. For. Meteor., 255, 3143, https://doi.org/10.1016/j.agrformet.2017.07.001.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. B., and L. W. Gay, 1989: Preliminary modelling of transpiration from the fife site in Kansas. Agric. For. Meteor., 48, 305315, https://doi.org/10.1016/0168-1923(89)90075-0.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24, 4956, https://doi.org/10.1175/1520-0450(1985)024<0049:AFWCCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., and E. W. Eloranta, 1984: Boundary layer experiment—1983. Bull. Amer. Meteor. Soc., 65, 450456, https://doi.org/10.1175/1520-0477(1984)065<0450:BLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and J. Lindvall, 2011: Diurnal cycles in the NCAR climate model. ECMWF GABLS Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF/WCRP, 103–109, https://www.ecmwf.int/sites/default/files/elibrary/2012/12489-diurnal-cycles-ncar-climate-model.pdf.

  • Svensson, G., and J. Lindvall, 2015: Evaluation of near-surface variables and the vertical structure of the boundary layer in CMIP5 models. J. Climate, 28, 52335253, https://doi.org/10.1175/JCLI-D-14-00596.1.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L., I. Y. Fung, S. Levis, G. B. Bonan, and S. C. Doney, 2010: Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl. Acad. Sci. USA, 107, 12951300, https://doi.org/10.1073/pnas.0913846107.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558567, https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2017: Observational evidence for cloud cover enhancement over western European forests. Nat. Commun., 8, 14065, https://doi.org/10.1038/ncomms14065.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Ueyama, M., T. Yamamori, H. Iwata, and Y. Harazono, 2020: Cooling and moistening of the planetary boundary layer in interior Alaska due to a postfire change in surface energy exchange. J. Geophys. Res. Atmos., 125, e2020JD032968, https://doi.org/10.1029/2020JD032968.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010a: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, https://doi.org/10.1175/2010JHM1272.1.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, and A. J. Teuling, 2010b: Land-atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophys. Res. Lett., 37, L21401, https://doi.org/10.1029/2010GL045374.

    • Search Google Scholar
    • Export Citation
  • van Stratum, B. J. H., J. Vilá-Guerau de Arellano, C. C. van Heerwaarden, and H. G. Ouwersloot, 2014: Subcloud-layer feedbacks driven by the mass flux of shallow cumulus convection over land. J. Atmos. Sci., 71, 881895, https://doi.org/10.1175/JAS-D-13-0192.1.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., C. C. van Heerwaarden, and J. Lelieveld, 2012: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci., 5, 701704, https://doi.org/10.1038/ngeo1554.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., H. G. Ouwersloot, D. Baldocchi, and C. M. J. Jacobs, 2014: Shallow cumulus rooted in photosynthesis. Geophys. Res. Lett., 41, 17961802, https://doi.org/10.1002/2014GL059279.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., C. C. van Heerwaarden, and B. J. H. van Stratum, 2015: Atmospheric Boundary Layer: Integrating Air Chemistry and Land Interactions. 1st ed. Cambridge University Press, 265 pp.

  • Webb, E. E., M. M. Loranty, and J. W. Lichstein, 2021: Surface water, vegetation, and fire as drivers of the terrestrial Arctic-boreal albedo feedback. Environ. Res. Lett., 16, 084046, https://doi.org/10.1088/1748-9326/ac14ea.

    • Search Google Scholar
    • Export Citation
  • Westra, D., G. J. Steeneveld, and A. A. M. Holtslag, 2012: Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. J. Hydrometeor., 13, 13471358, https://doi.org/10.1175/JHM-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Wilde, N. P., R. B. Stull, and E. W. Eloranta, 1985: The LCL zone and cumulus onset. J. Climate Appl. Meteor., 24, 640657, https://doi.org/10.1175/1520-0450(1985)024<0640:TLZACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ylivinkka, I., and Coauthors, 2020: Clouds over Hyytiälä, Finland: An algorithm to classify clouds based on solar radiation and cloud base height measurements. Atmos. Meas. Tech., 13, 55955619, https://doi.org/10.5194/amt-13-5595-2020.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., J. Comstock, and V. Morris, 2022: Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data. Atmos. Meas. Tech., 15, 47354749, https://doi.org/10.5194/amt-15-4735-2022.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos. Sci., 70, 12971315, https://doi.org/10.1175/JAS-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108, 4453, https://doi.org/10.1029/2002JD003119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 463 463 39
Full Text Views 157 157 4
PDF Downloads 128 128 7