A Novel Method for Diagnosing Land–Atmosphere Coupling Sensitivity in a Single-Column Model

Finley M. Hay-Chapman aGeorge Mason University, Fairfax, Virginia

Search for other papers by Finley M. Hay-Chapman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4161-8494
and
Paul A. Dirmeyer aGeorge Mason University, Fairfax, Virginia
bCenter for Ocean–Land–Atmosphere Studies, Fairfax, Virginia

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of boundary layer properties and cloudiness to changes in surface evaporative fraction (EF) is investigated in a single-column model to quantify the locally coupled impact of subgrid surface variations on the atmosphere during summer. Sensitive coupling days are defined when the model atmosphere exhibits large variations across a range of EFs centered on the analyzed value. Coupling sensitivity exists as both positive feedback (cloudiness increases with EF) and negative feedback (clouds increase with decreasing EF) regimes. The positive regime manifests in shallow convection situations, which are capped by a strengthened inversion and subsidence, restricting the vertical extent of convection to just above the boundary layer. Surfaces with larger EF (greater surface latent heat flux) can inject more moisture into the vertically confined system, lowering the cloud base and an increasing cloud liquid water path (LWP). Negative feedback regimes tend to manifest when large-scale deep convection, such as from mesoscale convective systems and fronts, is advected through the domain, where convection strengthens over surfaces with a lower EF (greater surface sensible heat flux). The invigoration of these systems by the land surface leads to an increase in LWP through strengthened updrafts and stronger coupling between the boundary layer and the free atmosphere. These results apply in the absence of heterogeneity-induced mesoscale circulations, providing a one-dimensional dynamical perspective on the effect of surface heterogeneity. This study provides a framework of intermediate complexity, lying between parcel theory and high-resolution coupled land–atmosphere modeling, and therefore isolates the relevant first-order processes in land–atmosphere interactions.

Significance Statement

Cloud formation, distribution, and other properties may be sensitive to heterogeneous surfaces depending on the strength and location of such heterogeneities and the background atmospheric state. This may drive differences in the cloud population depending on which part of the domain one is located. This may also lead to mesoscale circulations, which may strengthen or weaken this effect. Currently, climate models act on scales (∼100 km) that are too large to explicitly represent these processes, which are strongest at smaller scales (around 5–40 km). Therefore, subgrid-scale heterogeneity is neglected, and any predictability and model fidelity it may provide is lost. We use a simple model to diagnose sensitivity of the local atmosphere to surface variations meant to represent possible subgrid heterogeneity, providing a first-order estimate of its effect. We conclude that preferentially sensitive atmospheric states exist that lead to positive and/or negative feedback between land and atmosphere. This information is valuable to future climate model parameterizations aimed at improving the representation of these feedbacks.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Finley M. Hay-Chapman, fhaychap@gmu.edu

Abstract

The response of boundary layer properties and cloudiness to changes in surface evaporative fraction (EF) is investigated in a single-column model to quantify the locally coupled impact of subgrid surface variations on the atmosphere during summer. Sensitive coupling days are defined when the model atmosphere exhibits large variations across a range of EFs centered on the analyzed value. Coupling sensitivity exists as both positive feedback (cloudiness increases with EF) and negative feedback (clouds increase with decreasing EF) regimes. The positive regime manifests in shallow convection situations, which are capped by a strengthened inversion and subsidence, restricting the vertical extent of convection to just above the boundary layer. Surfaces with larger EF (greater surface latent heat flux) can inject more moisture into the vertically confined system, lowering the cloud base and an increasing cloud liquid water path (LWP). Negative feedback regimes tend to manifest when large-scale deep convection, such as from mesoscale convective systems and fronts, is advected through the domain, where convection strengthens over surfaces with a lower EF (greater surface sensible heat flux). The invigoration of these systems by the land surface leads to an increase in LWP through strengthened updrafts and stronger coupling between the boundary layer and the free atmosphere. These results apply in the absence of heterogeneity-induced mesoscale circulations, providing a one-dimensional dynamical perspective on the effect of surface heterogeneity. This study provides a framework of intermediate complexity, lying between parcel theory and high-resolution coupled land–atmosphere modeling, and therefore isolates the relevant first-order processes in land–atmosphere interactions.

Significance Statement

Cloud formation, distribution, and other properties may be sensitive to heterogeneous surfaces depending on the strength and location of such heterogeneities and the background atmospheric state. This may drive differences in the cloud population depending on which part of the domain one is located. This may also lead to mesoscale circulations, which may strengthen or weaken this effect. Currently, climate models act on scales (∼100 km) that are too large to explicitly represent these processes, which are strongest at smaller scales (around 5–40 km). Therefore, subgrid-scale heterogeneity is neglected, and any predictability and model fidelity it may provide is lost. We use a simple model to diagnose sensitivity of the local atmosphere to surface variations meant to represent possible subgrid heterogeneity, providing a first-order estimate of its effect. We conclude that preferentially sensitive atmospheric states exist that lead to positive and/or negative feedback between land and atmosphere. This information is valuable to future climate model parameterizations aimed at improving the representation of these feedbacks.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Finley M. Hay-Chapman, fhaychap@gmu.edu
Save
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132136, https://doi.org/10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, https://doi.org/10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and R. Avissar, 2000: Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys. Res. Lett., 27, 533536, https://doi.org/10.1029/1999GL010971.

    • Search Google Scholar
    • Export Citation
  • Benson, D. O., and P. A. Dirmeyer, 2021: Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J. Climate, 34, 21752187, https://doi.org/10.1175/JCLI-D-20-0440.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97, 18 52318 531, https://doi.org/10.1029/91JD03172.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Bezerra, B. G., C. A. C. dos Santos, B. B. da Silva, A. M. Perez-Marin, M. V. C. Bezerra, J. R. C. Bezerra, and T. V. R. Rao, 2013: Estimation of soil moisture in the root-zone from remote sensing data. Rev. Bras. Ciênc. Solo, 37, 596603, https://doi.org/10.1590/S0100-06832013000300005.

    • Search Google Scholar
    • Export Citation
  • Bosman, P. J. M., C. C. van Heerwaarden, and A. J. Teuling, 2019: Sensible heating as a potential mechanism for enhanced cloud formation over temperate forest. Quart. J. Roy. Meteor. Soc., 145, 450468, https://doi.org/10.1002/qj.3441.

    • Search Google Scholar
    • Export Citation
  • Brunsell, N. A., 2006: Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sens. Environ., 100, 200211, https://doi.org/10.1016/j.rse.2005.10.025.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 525 pp.

  • Catalano, F., A. Alessandri, M. De Felice, Z. Zhu, and R. B. Myneni, 2016: Observationally based analysis of land–atmosphere coupling. Earth Syst. Dyn., 7, 251266, https://doi.org/10.5194/esd-7-251-2016.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., P. Metcalfe, and E. F. Wood, 2016: HydroBlocks: A field-scale resolving land surface model for application over continental extents. Hydrol. Processes, 30, 35433559, https://doi.org/10.1002/hyp.10891.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., L. Torres-Rojas, N. Vergopolan, and C. K. Fisher, 2021: HydroBlocks v0.2: Enabling a field-scale two-way coupling between the land surface and river networks in Earth system models. Geosci. Model Dev., 14, 68136832, https://doi.org/10.5194/gmd-14-6813-2021.

    • Search Google Scholar
    • Export Citation
  • Chen, J., S. Hagos, H. Xiao, J. D. Fast, and Z. Feng, 2020: Characterization of surface heterogeneity-induced convection using cluster analysis. J. Geophys. Res. Atmos., 125, e2020JD032550, https://doi.org/10.1029/2020JD032550.

    • Search Google Scholar
    • Export Citation
  • Dal Gesso, S., and R. A. J. Neggers, 2018: Can we use single-column models for understanding the boundary layer cloud-climate feedback? J. Adv. Model. Earth Syst., 10, 245261, https://doi.org/10.1002/2017MS001113.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and H. E. Norton, 2018: Indications of surface and sub-surface hydrologic properties from SMAP soil moisture retrievals. Hydrology, 5, 36, https://doi.org/10.3390/hydrology5030036.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., F. J. Zeng, A. Ducharne, J. C. Morrill, and R. D. Koster, 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1, 121134, https://doi.org/10.1175/1525-7541(2000)001<0121:TSOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, https://doi.org/10.1175/JHM-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, https://doi.org/10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., G. Balsamo, E. M. Blyth, R. Morrison, and H. M. Cooper, 2021: Land–atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv., 2, e2020AV000283, https://doi.org/10.1029/2020AV000283.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1987: Better bootstrap confidence intervals. J. Amer. Stat. Assoc., 82, 171185, https://doi.org/10.1080/01621459.1987.10478410.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. 1st ed. Chapman and Hall/CRC, 456 pp., https://doi.org/10.1201/9780429246593.

  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elhag, M., A. Psilovikos, I. Manakos, and K. Perakis, 2011: Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resour. Manage., 25, 27312742, https://doi.org/10.1007/s11269-011-9835-9.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., 1995: Recent advances in land-atmosphere interaction research. Rev. Geophys., 33, 9951003, https://doi.org/10.1029/95RG01163.

    • Search Google Scholar
    • Export Citation
  • Eswar, R., M. Sekhar, and B. K. Bhattacharya, 2013: A simple model for spatial disaggregation of evaporative fraction: Comparative study with thermal sharpened land surface temperature data over India. J. Geophys. Res. Atmos., 118, 12 02912 044, https://doi.org/10.1002/2013JD020813.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello Jr., and E. Shevliakova, 2017: The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun., 8, 989, https://doi.org/10.1038/s41467-017-01038-w.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., C. O. Wulff, and S. M. Quiring, 2014: Assessment of observed and model-derived soil moisture-evaporative fraction relationships over the United States southern Great Plains. J. Geophys. Res. Atmos., 119, 62796291, https://doi.org/10.1002/2014JD021490.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., P. A. Dirmeyer, and D. O. Benson, 2018: Evaluation of heat wave forecasts seamlessly across subseasonal timescales. npj Climate Atmos. Sci., 1, 20, https://doi.org/10.1038/s41612-018-0027-7.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., 1975: Cumulus dynamics: Local compensating subsidence and its implications for cumulus parameterization. Pure Appl. Geophys., 113, 851867, https://doi.org/10.1007/BF01592963.

    • Search Google Scholar
    • Export Citation
  • Gaal, R., and J. L. Kinter III, 2021: Soil moisture influence on the incidence of summer mesoscale convective systems in the U.S. Great Plains. Mon. Wea. Rev., 149, 39813994, https://doi.org/10.1175/MWR-D-21-0140.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., J. E. Truesdale, J. T. Bacmeister, P. M. Caldwell, R. B. Neale, P. A. Bogenschutz, and I. R. Simpson, 2019: The Single Column Atmosphere Model version 6 (SCAM6): Not a scam but a tool for model evaluation and development. J. Adv. Model. Earth Syst., 11, 13811401, https://doi.org/10.1029/2018MS001578.

    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, https://doi.org/10.1175/JHM-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Harvey, N. J., C. L. Daleu, R. A. Stratton, R. S. Plant, S. J. Woolnough, and A. J. Stirling, 2022: The impact of surface heterogeneity on the diurnal cycle of deep convection. Quart. J. Roy. Meteor. Soc., 148, 35093527, https://doi.org/10.1002/qj.4371.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Z. Yang, and R. E. Dickinson, 1993: The Project for Intercomparison of Land-surface Parameterization Schemes. Bull. Amer. Meteor. Soc., 74, 13351350, https://doi.org/10.1175/1520-0477(1993)074<1335:TPFIOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H., and P. A. Dirmeyer, 2021: Nonlinearity and multivariate dependencies in the terrestrial leg of land-atmosphere coupling. Water Resour. Res., 57, e2020WR028179, https://doi.org/10.1029/2020WR028179.

    • Search Google Scholar
    • Export Citation
  • Hsu, H., and P. A. Dirmeyer, 2022: Deconstructing the soil moisture–latent heat flux relationship: The range of coupling regimes experienced and the presence of nonlinearity within the sensitive regime. J. Hydrometeor., 23, 10411057, https://doi.org/10.1175/JHM-D-21-0224.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2009: On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resour. Res., 45, W04425, https://doi.org/10.1029/2008WR007175.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2013: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol. Processes, 27, 19882003, https://doi.org/10.1002/hyp.9351.

    • Search Google Scholar
    • Export Citation
  • Huang, L., J. H. Jiang, Z. Wang, H. Su, M. Deng, and S. Massie, 2015: Climatology of cloud water content associated with different cloud types observed by A-Train satellites. J. Geophys. Res. Atmos., 120, 41964212, https://doi.org/10.1002/2014JD022779.

    • Search Google Scholar
    • Export Citation
  • Huang, M., P.-L. Ma, N. W. Chaney, D. Hao, G. Bisht, M. D. Fowler, V. E. Larson, and L. R. Leung, 2022: Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime. Geosci. Model Dev., 15, 63716384, https://doi.org/10.5194/gmd-15-6371-2022.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, https://doi.org/10.1175/MWR-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and J.-H. Ryu, 2016: Response of moist convection to multi-scale surface flux heterogeneity. Quart. J. Roy. Meteor. Soc., 142, 21802193, https://doi.org/10.1002/qj.2811.

    • Search Google Scholar
    • Export Citation
  • Kawashima, S., and T. Ishida, 1992: Effects of regional temperature, wind speed and soil wetness on spatial structure of surface air temperature. Theor. Appl. Climatol., 46, 153161, https://doi.org/10.1007/BF00866095.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-S., and B. H. Kwon, 2019: Estimation of sensible heat flux and atmospheric boundary layer height using an unmanned aerial vehicle. Atmosphere, 10, 363, https://doi.org/10.3390/atmos10070363.

    • Search Google Scholar
    • Export Citation
  • Klein, C., and C. M. Taylor, 2020: Dry soils can intensify mesoscale convective systems. Proc. Natl. Acad. Sci. USA, 117, 21 13221 137, https://doi.org/10.1073/pnas.2007998117.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and W. R. Cotton, 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Geophys., 23, 183215, https://doi.org/10.1029/RG023i002p00183.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, https://doi.org/10.1029/91JD01696.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Search Google Scholar
    • Export Citation
  • Lee, J. M., Y. Zhang, and S. A. Klein, 2019: The effect of land surface heterogeneity and background wind on shallow cumulus clouds and the transition to deeper convection. J. Atmos. Sci., 76, 401419, https://doi.org/10.1175/JAS-D-18-0196.1.

    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., and S. Raasch, 2003: Large eddy simulation of thermally induced oscillations in the convective boundary layer. J. Atmos. Sci., 60, 23282341, https://doi.org/10.1175/1520-0469(2003)060<2328:LESOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. P. Weaver, and R. Avissar, 1999: Toward a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity. J. Geophys. Res., 104, 19 51519 533, https://doi.org/10.1029/1999JD900361.

    • Search Google Scholar
    • Export Citation
  • Lyons, T. J., P. Schwerdtfeger, J. M. Hacker, I. J. Foster, R. C. G. Smith, and H. Xinmei, 1993: Land–atmosphere interaction in a semiarid region: The bunny fence experiment. Bull. Amer. Meteor. Soc., 74, 13271334, https://doi.org/10.1175/1520-0477(1993)074<1327:LIIASR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 18101827, https://doi.org/10.1002/2015MS000490.

    • Search Google Scholar
    • Export Citation
  • Machulskaya, E., and D. Mironov, 2018: Boundary conditions for scalar (co)variances over heterogeneous surfaces. Bound.-Layer Meteor., 169, 139150, https://doi.org/10.1007/s10546-018-0354-6.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moon, H., B. P. Guillod, L. Gudmundsson, and S. I. Seneviratne, 2019: Soil moisture effects on afternoon precipitation occurrence in current climate models. Geophys. Res. Lett., 46, 18611869, https://doi.org/10.1029/2018GL080879.

    • Search Google Scholar
    • Export Citation
  • Norton, H., 2018: Soil Moisture Memory (SMM) of karst and non-karst soils. Ph.D. dissertation, George Mason University, 132 pp., https://www.proquest.com/docview/2205469678/abstract/CF2616199EBA466APQ/1.

  • Omidvar, H., E. Bou-Zeid, Q. Li, J.-P. Mellado, and P. Klein, 2020: Plume or bubble? Mixed-convection flow regimes and city-scale circulations. J. Fluid Mech., 897, A5, https://doi.org/10.1017/jfm.2020.360.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, https://doi.org/10.1175/JHM-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, S., and I. N. Williams, 2020: Observational evidence of state-dependent positive and negative land surface feedback on afternoon deep convection over the southern Great Plains. Geophys. Res. Lett., 47, e2019GL086622, https://doi.org/10.1029/2019GL086622.

    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., and E. F. Wood, 2015: The attribution of land–atmosphere interactions on the seasonal predictability of drought. J. Hydrometeor., 16, 793810, https://doi.org/10.1175/JHM-D-14-0121.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., and J. A. Santanello, 2017: Utility of satellite remote sensing for land–atmosphere coupling and drought metrics. J. Hydrometeor., 18, 863877, https://doi.org/10.1175/JHM-D-16-0171.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., C. R. Ferguson, and E. F. Wood, 2013: Temporal variability of land–atmosphere coupling and its implications for drought over the southeast United States. J. Hydrometeor., 14, 622635, https://doi.org/10.1175/JHM-D-12-090.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, https://doi.org/10.1175/2009JHM1066.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and K. L. Rasmussen, 2020: The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ., 1, 300314, https://doi.org/10.1038/s43017-020-0057-7.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seo, E., and P. A. Dirmeyer, 2022: Understanding the diurnal cycle of land–atmosphere interactions from flux site observations. Hydrol. Earth Syst. Sci., 26, 54115429, https://doi.org/10.5194/hess-26-5411-2022.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-H., and K.-J. Ha, 2007: Effects of spatial and temporal variations in PBL depth on a GCM. J. Climate, 20, 47174732, https://doi.org/10.1175/JCLI4274.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Search Google Scholar
    • Export Citation
  • Simon, J. S., A. D. Bragg, P. A. Dirmeyer, and N. W. Chaney, 2021: Semi-coupling of a field-scale resolving land-surface model and WRF-LES to investigate the influence of land-surface heterogeneity on cloud development. J. Adv. Model. Earth Syst., 13, e2021MS002602, https://doi.org/10.1029/2021MS002602.

    • Search Google Scholar
    • Export Citation
  • Sposito, G., 2017: Understanding the Budyko equation. Water, 9, 236, https://doi.org/10.3390/w9040236.

  • Tang, S., C. Tao, S. Xie, and M. Zhang, 2019: Description of the ARM large-scale forcing data from the constrained Variational Analysis (VARANAL) version 2. Rep. DOE/SC-ARM-TR-222, 33 pp., https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-222.pdf.

  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello Jr., 2015a: The heated condensation framework. Part I: Description and Southern Great Plains case study. J. Hydrometeor., 16, 19291945, https://doi.org/10.1175/JHM-D-14-0117.1.

    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello Jr., 2015b: The heated condensation framework. Part II: Climatological behavior of convective initiation and land–atmosphere coupling over the conterminous United States. J. Hydrometeor., 16, 19461961, https://doi.org/10.1175/JHM-D-14-0118.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., 2015: Detecting soil moisture impacts on convective initiation in Europe. Geophys. Res. Lett., 42, 46314638, https://doi.org/10.1002/2015GL064030.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, https://doi.org/10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, https://doi.org/10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon, F. Guichard, G. Nikulin, and G. M. S. Lister, 2013: Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization. Geophys. Res. Lett., 40, 62136218, https://doi.org/10.1002/2013GL058511.

    • Search Google Scholar
    • Export Citation
  • Tian, J., Y. Zhang, S. A. Klein, R. Öktem, and L. Wang, 2022: How does land cover and its heterogeneity length scales affect the formation of summertime shallow cumulus clouds in observations from the US southern Great Plains? Geophys. Res. Lett., 49, e2021GL097070, https://doi.org/10.1029/2021GL097070.

    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., A. J. Pitman, M. G. Donat, M. G. De Kauwe, and O. Angélil, 2018: Evaluating the contribution of land-atmosphere coupling to heat extremes in CMIP5 models. Geophys. Res. Lett., 45, 90039012, https://doi.org/10.1029/2018GL079102.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, https://doi.org/10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, https://doi.org/10.1175/2010JHM1272.1.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. P. Mellado, and A. D. Lozar, 2014: Scaling laws for the heterogeneously heated free convective boundary layer. J. Atmos. Sci., 71, 39754000, https://doi.org/10.1175/JAS-D-13-0383.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., J. Zhao, H. Chen, and X.-Z. Liang, 2021: Coupling between land surface fluxes and lifting condensation level: Mechanisms and sensitivity to model physics parameterizations. J. Geophys. Res. Atmos., 126, e2020JD034313, https://doi.org/10.1029/2020JD034313.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and M. S. Torn, 2015: Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling. Geophys. Res. Lett., 42, 94169424, https://doi.org/10.1002/2015GL066305.

    • Search Google Scholar
    • Export Citation
  • Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Yang, C., Y. Ma, and Y. Yuan, 2021: Terrestrial and atmospheric controls on surface energy partitioning and evaporative fraction regimes over the Tibetan Plateau in the growing season. J. Geophys. Res. Atmos., 126, e2021JD035011, https://doi.org/10.1029/2021JD035011.

    • Search Google Scholar
    • Export Citation
  • Yang, C., Y. Ma, Y. Yuan, and H. Zuo, 2022: Positive and negative surface feedback and atmospheric control of land surface conditions on convective organization over the Tibetan Plateau. J. Geophys. Res. Atmos., 127, e2022JD036884, https://doi.org/10.1029/2022JD036884.

    • Search Google Scholar
    • Export Citation
  • Zeng, D., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land–atmosphere coupling on northeast China persistent drought in spring–summer of 2017. J. Climate, 32, 74037420, https://doi.org/10.1175/JCLI-D-19-0175.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., X. Yang, W. Zhang, S. Li, and Y. Zhang, 2019: Sensitivity of afternoon precipitation to evaporative fraction in eastern Asia based on ERA-Interim datasets. Atmos. Sci. Lett., 20, e892, https://doi.org/10.1002/asl.892.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., H. Zhang, and Z. Li, 2021: Role of surface latent heat flux in shallow cloud transitions: A mechanism-denial LES study. J. Atmos. Sci., 78, 27092723, https://doi.org/10.1175/JAS-D-20-0381.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, W., S. Jia, and A. Lv, 2019: A statistical analysis of the remotely sensed land surface temperature–vegetation index method for the retrieval of evaporative fraction over grasslands in the southern Great Plains. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 28892896, https://doi.org/10.1109/JSTARS.2019.2917183.

    • Search Google Scholar
    • Export Citation
  • Zhu, W., S. Jia, U. Lall, Y. Cheng, and P. Gentine, 2020: An observation-driven optimization method for continuous estimation of evaporative fraction over large heterogeneous areas. Remote Sens. Environ., 247, 111887, https://doi.org/10.1016/j.rse.2020.111887.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 600 600 105
Full Text Views 271 271 170
PDF Downloads 176 176 83