• Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Berkowicz, R., and L. P. Prahm, 1982: Sensible heat flux estimated from routine meteorological data by the resistance method. J. Appl. Meteor., 21, 18451864, https://doi.org/10.1175/1520-0450(1982)021%3C1845:SHFEFR%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2013: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev., 6, 18891904, https://doi.org/10.5194/gmd-6-1889-2013.

    • Search Google Scholar
    • Export Citation
  • Brown, B., E. Ebert, T. Fowler, E. Gilleland, P. Kucera, and L. Wilson, 2013: Verification methods for tropical cyclone forecasts. WMO Tech. Doc. WWRP 2013-7, 89 pp.

  • Castillo, R., R. Nieto, A. Drumond, and L. Gimeno, 2014: Estimating the temporal domain when the discount of the net evaporation term affects the resulting net precipitation pattern in the moisture budget using a 3-D Lagrangian approach. PLOS ONE, 9, e99046, https://doi.org/10.1371/journal.pone.0099046.

    • Search Google Scholar
    • Export Citation
  • Ciric, D., M. Stojanovic, A. Drumond, R. Nieto, and L. Gimeno, 2016: Tracking the origin of moisture over the Danube River Basin using a Lagrangian approach. Atmosphere, 12, 162, https://doi.org/10.3390/atmos7120162.

    • Search Google Scholar
    • Export Citation
  • Cloux, S., D. Garaboa-Paz, D. Insua-Costa, G. Miguez-Macho, and V. Pérez-Muñuzuri, 2021: Extreme precipitation events in the Mediterranean area: Contrasting Lagrangian and Eulerian models for moisture sources identification. Hydrol. Earth Syst. Sci., 25, 64656477, https://doi.org/10.5194/hess-25-6465-2021.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, L. Gimeno, and T. Ambrizzi, 2008: A Lagrangian identification of major sources of moisture over central Brazil and La Plata Basin. J. Geophys. Res., 113, D14128, https://doi.org/10.1029/2007JD009547.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, and L. Gimeno, 2011a: On the contribution of the Tropical Western Hemisphere Warm Pool source of moisture to the Northern Hemisphere precipitation through a Lagrangian approach. J. Geophys. Res., 116, D00Q04, https://doi.org/10.1029/2010JD015397.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, E. Hernandez, and L. Gimeno, 2011b: A Lagrangian analysis of the variation in moisture sources related to drier and wetter conditions in regions around the Mediterranean Basin. Nat. Hazards Earth Syst. Sci., 11, 23072320, https://doi.org/10.5194/nhess-11-2307-2011.

    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., L. Gimeno, J. A. Amador, and R. Nieto, 2010: Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res., 115, D05103, https://doi.org/10.1029/2009JD012455.

    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., L. Gimeno, and J. Amador, 2017: Role of moisture transport for Central American precipitation. Earth Syst. Dyn., 8, 147161, https://doi.org/10.5194/esd-8-147-2017.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, https://doi.org/10.1175/1520-0469(1999)056%3C1766:DAEOAC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, R. Trigo, S. M. Vicente-Serrano, and J. I. López-Moreno, 2010a: Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J. Hydrometeor., 11, 421436, https://doi.org/10.1175/2009JHM1182.1.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010b: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2020: Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Sci. Rev., 201, 103070, https://doi.org/10.1016/j.earscirev.2019.103070.

    • Search Google Scholar
    • Export Citation
  • Gómez-Hernández, M., A. Drumond, L. Gimeno, and R. Garcia-Herrera, 2013: Variability of moisture sources in the Mediterranean region during the period 1980-2000. Water Resour. Res., 49, 67816794, https://doi.org/10.1002/wrcr.20538.

    • Search Google Scholar
    • Export Citation
  • Grythe, H., N. I. Kristiansen, C. D. Groot-Zwaaftink, S. Eckhardt, P. Tunved, R. Krejci, J. Ström, and A. Stohl, 2017: A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10. Geosci. Model Dev., 10, 14471466, https://doi.org/10.5194/gmd-10-1447-2017.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1982: Applications in air pollution modeling. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. Van Dop, Eds., D. Reidel Publishing Company, 275–310.

  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Insua-Costa, D., and G. Miguez-Macho, 2018: A new moisture tagging capability in the Weather Research and Forecasting model: Formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth Syst. Dyn., 9, 167185, https://doi.org/10.5194/esd-9-167-2018.

    • Search Google Scholar
    • Export Citation
  • Insua-Costa, D., G. Miguez-Macho, and M. C. Llasat, 2019: Local and remote moisture sources for extreme precipitation: A study of the two catastrophic 1982 western Mediterranean episodes. Nat. Hazards Earth Syst. Sci., 23, 38853900, https://doi.org/10.5194/hess-23-3885-2019.

    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia–Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NMC/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci., 4, 126, https://doi.org/10.1016/S1571-9197(06)80003-0.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Nieto, R., L. Gimeno, and R. M. Trigo, 2006: A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett., 33, L18707, https://doi.org/10.1029/2006GL027232.

    • Search Google Scholar
    • Export Citation
  • Nieto, R., L. Gimeno, A. Drumond, and E. Hernandez, 2010: A Lagrangian identification of the main moisture sources and sinks affecting the Mediterranean area. WSEAS Trans. Environ. Dev., 6, 365374.

    • Search Google Scholar
    • Export Citation
  • Nogueira, M., 2020: Inter-comparison of ERA-5, ERA-Interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. J. Hydrol., 583, 124632, https://doi.org/10.1016/j.jhydrol.2020.124632.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., M. De Almeida, R. D. Rosen, and D. A. Salstein, 1982: Atmospheric moisture transport and the water balance of the Mediterranean Sea. Water Resour. Res., 18, 8390, https://doi.org/10.1029/WR018i001p00083.

    • Search Google Scholar
    • Export Citation
  • Pisso, I., and Coauthors, 2019: The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev., 12, 49554997, https://doi.org/10.5194/gmd-12-4955-2019.

    • Search Google Scholar
    • Export Citation
  • Quante, M. V., and V. Mathias, 2006: Water in the Earth’s atmosphere. J. Phys. IV France, 139, 3761, https://doi.org/10.1051/jp4:2006139005.

    • Search Google Scholar
    • Export Citation
  • Rahimi, S., W. Krantz, Y.-H. Lin, B. Bass, N. Goldenson, A. Hall, Z. J. Lebo, and J. Norris, 2022: Evaluation of a reanalysis‐driven configuration of WRF4 over the western United States from 1980 to 2020. J. Geophys. Res. Atmos., 127, e2021JD035699, https://doi.org/10.1029/2021JD035699.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., M. J. Martins, R. Tomé, and R. M. Trigo, 2018: Extreme precipitation events in summer in the Iberian Peninsula and its relationship with atmospheric rivers. Front. Earth Sci., 6, 110, https://doi.org/10.3389/feart.2018.00110.

    • Search Google Scholar
    • Export Citation
  • Randhir, T. O., 2012: Water for life and ecosystem sustainability. Earth Sci. Climatic Change, 3, e107, https://doi.org/10.4172/2157-7617.1000e107.

    • Search Google Scholar
    • Export Citation
  • Rios-Entenza, A., and G. Miguez-Macho, 2014: Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula. Climate Dyn., 42, 32073231, https://doi.org/10.1007/s00382-013-1971-x.

    • Search Google Scholar
    • Export Citation
  • Rios-Entenza, A., P. M. M. Soares, R. M. Trigo, R. M. Cardoso, and G. Miguez-Macho, 2014: Moisture recycling in the Iberian Peninsula from a regional climate simulation: Spatiotemporal analysis and impact on the precipitation regime. J. Geophys. Res. Atoms., 119, 58955912, https://doi.org/10.1002/2013JD021274.

    • Search Google Scholar
    • Export Citation
  • Schicker, I., S. Radanovics, and P. Seibert, 2010: Origin and transport of Mediterranean moisture and air. Atmos. Chem. Phys., 10, 50895105, https://doi.org/10.5194/acp-10-5089-2010.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., 1998: Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ., 32, 947966, https://doi.org/10.1016/S1352-2310(97)00457-3.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and D. J. Thomson, 1999: A density correction for Lagrangian particle dispersion models. Bound.-Layer Meteor., 90, 155167, https://doi.org/10.1023/A:1001741110696.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2004: Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in Central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle: Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, https://doi.org/10.1175/JHM470.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, https://doi.org/10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the Unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556, https://doi.org/10.1017/S0022112087001940.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 16851696, https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 2000: Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys. Res. Lett., 27, 29132916, https://doi.org/10.1029/2000GL011526.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Search Google Scholar
    • Export Citation
  • Vázquez, M., R. Nieto, M. L. R. Liberato, and L. Gimeno, 2020: Atmospheric moisture sources associated with extreme precipitation during the peak precipitation month. Wea. Climate Extremes, 30, 100289, https://doi.org/10.1016/j.wace.2020.100289.

    • Search Google Scholar
    • Export Citation
  • Ward, M. N., 1998: Diagnosis and short-lead predictions of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J. Climate, 11, 31673191, https://doi.org/10.1175/1520-0442(1998)011<3167:DASLTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Peterson, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Search Google Scholar
    • Export Citation
  • Zhao, N., A. Manda, X. Guo, K. Kikuchi, T. Nasuno, M. Nakano, Y. Zhang, and B. Wang, 2021: A Lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: Importance of the moistening over the subtropical regions. Geophys. Res. Lett., 48, e2020GL091441, https://doi.org/10.1029/2020GL091441.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 364 364 59
Full Text Views 146 146 28
PDF Downloads 179 179 32

Comparison of Moisture Sources and Sinks Estimated with Different Versions of FLEXPART and FLEXPART-WRF Models Forced with ECMWF Reanalysis Data

José C. Fernández-AlvarezaCentro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Havana, Cuba

Search for other papers by José C. Fernández-Alvarez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3409-6138
,
Marta VázquezaCentro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain

Search for other papers by Marta Vázquez in
Current site
Google Scholar
PubMed
Close
,
Albenis Pérez-AlarcónaCentro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Havana, Cuba

Search for other papers by Albenis Pérez-Alarcón in
Current site
Google Scholar
PubMed
Close
,
Raquel NietoaCentro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain

Search for other papers by Raquel Nieto in
Current site
Google Scholar
PubMed
Close
, and
Luis GimenoaCentro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain

Search for other papers by Luis Gimeno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains.

Significance Statement

The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: José C. Fernández-Alvarez, jose.carlos.fernandez.alvarez@uvigo.es

Abstract

Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains.

Significance Statement

The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: José C. Fernández-Alvarez, jose.carlos.fernandez.alvarez@uvigo.es

Supplementary Materials

    • Supplemental Materials (PDF 17.7 MB)
Save