• Baatsen, M., R. J. Haarsma, A. J. Van Delden, and H. De Vries, 2015: Severe autumn storms in future Western Europe with a warmer Atlantic Ocean. Climate Dyn., 45, 949964, https://doi.org/10.1007/s00382-014-2329-8.

    • Search Google Scholar
    • Export Citation
  • Barry, J. M., 1997: Rising Tide: The Great Mississippi Flood of 1927 and How it Changed America. Simon and Schuster, 524 pp.

  • Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Search Google Scholar
    • Export Citation
  • Bentley, S. J., M. D. Blum, J. Maloney, L. Pond, and R. Paulsell, 2016: The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth-Sci. Rev., 153, 139174, https://doi.org/10.1016/j.earscirev.2015.11.001.

    • Search Google Scholar
    • Export Citation
  • Camillo, C. A., 2012: Divine Providence: The 2011 Flood in the Mississippi River and Tributaries Project. Mississippi River Commission, 312 pp.

  • Chen, J., and P. Kumar, 2002: Role of terrestrial hydrologic memory in modulating ENSO impacts in North America. J. Climate, 15, 35693585, https://doi.org/10.1175/1520-0442(2003)015<3569:ROTHMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, https://doi.org/10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric Rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, https://doi.org/10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Du, J., 2011: NCEP/EMC 4KM Gridded Data (GRIB) Stage IV data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 16 December 2022, https://doi.org/10.5065/D6PG1QDD.

  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Search Google Scholar
    • Export Citation
  • Fish, M. A., J. M. Done, D. L. Swain, A. M. Wilson, A. C. Michaelis, P. B. Gibson, and F. M. Ralph, 2022: Large-scale environments of successive atmospheric river events leading to compound precipitation extremes in California. J. Climate, 35, 15151536, https://doi.org/10.1175/JCLI-D-21-0168.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., W. Hazeleger, C. Severijns, H. De Vries, A. Sterl, R. Bintanja, G. J. Van Oldenborgh, and H. W. Van Den Brink, 2013: More hurricanes to hit Western Europe due to global warming. Geophys. Res. Lett., 40, 17831788, https://doi.org/10.1002/grl.50360.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and R. H. Grumm, 2001: Using normalized climatological anomalies to rank synoptic-scale events. Mon. Wea. Rev., 129, 24262442, https://doi.org/10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., and R. M. Hirsch, 1993: Statistical Methods in Water Resources. Elsevier, 522 pp.

  • Ito, R., T. Takemi, and O. Arakawa, 2016: A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: A case study. SOLA, 12, 100105, https://doi.org/10.2151/sola.2016-023.

    • Search Google Scholar
    • Export Citation
  • Jennrich, G. C., J. C. Furtado, J. B. Basara, and E. R. Martin, 2020: Synoptic characteristics of 14-day extreme precipitation events across the United States. J. Climate, 33, 64236440, https://doi.org/10.1175/JCLI-D-19-0563.1.

    • Search Google Scholar
    • Export Citation
  • Jung, C., and G. M. Lackmann, 2019: Extratropical transition of Hurricane Irene (2011) in a changing climate. J. Climate, 32, 48474871, https://doi.org/10.1175/JCLI-D-18-0558.1.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., T. R. Karl, M. F. Squires, X. Yin, S. T. Stegall, and D. R. Easterling, 2020a: Precipitation extremes: Trends and relationships with average precipitation and precipitable water in the contiguous United States. J. Appl. Meteor. Climatol., 59, 125142, https://doi.org/10.1175/JAMC-D-19-0185.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. E. Stevens, L. E. Stevens, and T. R. Karl, 2020b: Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States. Geophys. Res. Lett., 47, e2019GL086721, https://doi.org/10.1029/2019GL086721.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric Rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic. J. Climate, 30, 27392756, https://doi.org/10.1175/JCLI-D-16-0352.1.

    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2018: Projection of landfalling–tropical cyclone rainfall in the eastern United States under anthropogenic warming. J. Climate, 31, 72697286, https://doi.org/10.1175/JCLI-D-17-0747.1.

    • Search Google Scholar
    • Export Citation
  • Lott, G. A., and V. A. Myers, 1956: Meteorology of flood-producing storms in the Mississippi River basin. Weather Bureau Hydrometeorological Rep. 34, 226 pp.

  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., and G. M. Lackmann, 2019: Climatological changes in the extratropical transition of tropical cyclones in high-resolution global simulations. J. Climate, 32, 87338753, https://doi.org/10.1175/JCLI-D-19-0259.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Cahill, 2015: Climatology and environmental characteristics of extreme precipitation events in the Southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Munoz, S. E., and S. G. Dee, 2017: El Niño increases the risk of lower Mississippi River flooding. Sci. Rep., 7, 1772, https://doi.org/10.1038/s41598-017-01919-6.

    • Search Google Scholar
    • Export Citation
  • Munoz, S. E., and Coauthors, 2018: Climatic control of Mississippi River flood hazard amplified by river engineering. Nature, 556, 9598, https://doi.org/10.1038/nature26145.

    • Search Google Scholar
    • Export Citation
  • Myers, V. A., 1959: Meteorology of hypothetical flood sequences in the Mississippi River basin. Weather Bureau Hydrometeorological Rep. 35, 45 pp.

  • Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 11441166, https://doi.org/10.1002/2016WR019033.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, and Y. Zhu, 1992: Tropospheric Rivers? A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159182, https://doi.org/10.1175/MWR-D-19-0146.1.

    • Search Google Scholar
    • Export Citation
  • Pohlert, T., 2018: Non-parametric trend tests and change-point detection, version 1.1.1. R package, https://CRAN.R-project.org/package=trend.

  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2019: A scale to characterize the strength and impact of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Search Google Scholar
    • Export Citation
  • Russell, C., C. N. Waters, S. Himson, R. Holmes, A. Burns, J. Zalasiewicz, and M. Williams, 2021: Geological evolution of the Mississippi River into the anthropocene. Anthropocene Rev., 8, 115140, https://doi.org/10.1177/20530196211045527.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and M. L. Baeck, 2015: “Prophetic vision, vivid imagination”: The 1927 Mississippi River flood. Water Resour. Res., 51, 99649994, https://doi.org/10.1002/2015WR017927.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, Y. Zhang, and C. A. Doswell III, 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469489, https://doi.org/10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, J. E. Morrison, P. Sturdevant-Rees, D. F. Turner-Gillespie, and P. D. Bates, 2002: The regional hydrology of extreme floods in an urbanizing drainage basin. J. Hydrometeor., 3, 267282, https://doi.org/10.1175/1525-7541(2002)003<0267:TRHOEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, K. L. Meierdiercks, P. A. Nelson, A. J. Miller, and E. J. Holland, 2005: Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour. Res., 41, W10413, https://doi.org/10.1029/2004WR003712.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 4748, 317326, https://doi.org/10.1016/S0169-8095(97)00086-0.

    • Search Google Scholar
    • Export Citation
  • Su, Y., and J. A. Smith, 2021: An atmospheric water balance perspective on extreme rainfall potential for the contiguous US. Water Resour. Res., 57, e2020WR028387, https://doi.org/10.1029/2020WR028387.

    • Search Google Scholar
    • Export Citation
  • Van der Wiel, K., S. B. Kapnick, G. A. Vecchi, J. A. Smith, P. C. Milly, and L. Jia, 2018: 100-year lower Mississippi floods in a global climate model: Characteristics and future changes. J. Hydrometeor., 19, 15471563, https://doi.org/10.1175/JHM-D-18-0018.1.

    • Search Google Scholar
    • Export Citation
  • Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17, 261272, https://doi.org/10.1038/s41592-019-0686-2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, R. Chan, and V. Isaac, 2016: Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmos. Res., 181, 133153, https://doi.org/10.1016/j.atmosres.2016.06.010.

    • Search Google Scholar
    • Export Citation
  • Wiman, C., B. Hamilton, S. G. Dee, and S. E. Muñoz, 2021: Reduced lower Mississippi River discharge during the Medieval era. Geophys. Res. Lett., 48, e2020GL091182, https://doi.org/10.1029/2020GL091182.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2009: Manual on estimation of probable maximum precipitation (PMP). Tech. Rep. WMO-1045, 257 pp.

  • Wu, C.-Y., J. Mossa, and J. M. Jaeger, 2022: Estimate of decadal-scale riverbed deformation and bed-load sediment transport during flood events in the lowermost Mississippi River. Earth Surf. Processes Landforms, 47, 12711286, https://doi.org/10.1002/esp.5316.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 561 561 102
Full Text Views 204 204 20
PDF Downloads 228 228 22

The Hydrometeorology of Extreme Floods in the Lower Mississippi River

Yibing SuaDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Yibing Su in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2229-4751
,
James A. SmithaDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
, and
Gabriele VillarinibIIHR—Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Lower Mississippi River has experienced a cluster of extreme floods during the past two decades. The Bonnet Carré spillway, which is located on the Mississippi River immediately upstream of New Orleans, has been operated 15 times since its completion in 1931, with 7 occurrences after 2008. In this study, we examine rainfall and atmospheric water balance components associated with Lower Mississippi River flooding in 2008, 2011, and 2015–19. We focus on multiple time scales—1, 3, 7, and 14 days—reflecting contributions from individual storm systems and the aggregate contributions from a sequence of storm systems. Atmospheric water balance variables—integrated water vapor flux (IVT) and precipitable water—are central to our assessment of the storm environment for Lower Mississippi flood events. We find anomalously large IVT corridors accompany the critical periods of heavy rainfall and are organized in southwest–northeast orientation over the Mississippi domain. Atmospheric rivers play an important role as agents of extremes in water vapor flux and rainfall. We conduct climatological analyses of IVT and precipitable water extremes across the four time scales using 40 years of North American Regional Reanalysis (NARR) fields from 1979 to 2018. We find significant increasing trends in both variables at all time scales. Increases in IVT especially cover large regions of the Mississippi domain. The findings point to increased vulnerability faced by the Mississippi flood control system in the current and future climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yibing Su, yibings@princeton.edu

Abstract

The Lower Mississippi River has experienced a cluster of extreme floods during the past two decades. The Bonnet Carré spillway, which is located on the Mississippi River immediately upstream of New Orleans, has been operated 15 times since its completion in 1931, with 7 occurrences after 2008. In this study, we examine rainfall and atmospheric water balance components associated with Lower Mississippi River flooding in 2008, 2011, and 2015–19. We focus on multiple time scales—1, 3, 7, and 14 days—reflecting contributions from individual storm systems and the aggregate contributions from a sequence of storm systems. Atmospheric water balance variables—integrated water vapor flux (IVT) and precipitable water—are central to our assessment of the storm environment for Lower Mississippi flood events. We find anomalously large IVT corridors accompany the critical periods of heavy rainfall and are organized in southwest–northeast orientation over the Mississippi domain. Atmospheric rivers play an important role as agents of extremes in water vapor flux and rainfall. We conduct climatological analyses of IVT and precipitable water extremes across the four time scales using 40 years of North American Regional Reanalysis (NARR) fields from 1979 to 2018. We find significant increasing trends in both variables at all time scales. Increases in IVT especially cover large regions of the Mississippi domain. The findings point to increased vulnerability faced by the Mississippi flood control system in the current and future climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yibing Su, yibings@princeton.edu
Save