• Abatzoglou, J. T., S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch, 2018: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191.

    • Search Google Scholar
    • Export Citation
  • Alavi, N., S. Belair, V. Fortin, S. L. Zhang, S. Z. Husain, M. L. Carrera, and M. Abrahamowicz, 2016: Warm season evaluation of soil moisture prediction in the Soil, Vegetation, and Snow (SVS) scheme. J. Hydrometeor., 17, 23152332, https://doi.org/10.1175/JHM-D-15-0189.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, S., and V. Radić, 2020: Identification of local water resource vulnerability to rapid deglaciation in Alberta. Nat. Climate Change, 10, 933938, https://doi.org/10.1038/s41558-020-0863-4.

    • Search Google Scholar
    • Export Citation
  • Bastos, A., P. Ciais, P. Friedlingstein, S. Sitch, and S. Zaehle, 2020: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53, 165202, https://doi.org/10.1002/2014RG000473.

    • Search Google Scholar
    • Export Citation
  • Bierkens, M. F. P., and Coauthors, 2015: Hyper-resolution global hydrological modelling: What is next? “Everywhere and locally relevant.” Hydrol. Processes, 29, 310320, https://doi.org/10.1002/hyp.10391.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson, 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, https://doi.org/10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., P. Metcalfe, and E. F. Wood, 2016: HydroBlocks: A field-scale resolving land surface model for application over continental extents. Hydrol. Processes, 30, 35433559, https://doi.org/10.1002/hyp.10891.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., M. Huang, B. Zhu, G. Bisht, T. Zhou, Y. Liu, F. Song, and X. He, 2021: Validation of the Community Land Model version 5 over the contiguous United States (CONUS) using in situ and remote sensing data sets. J. Geophys. Res. Atmos., 126, e2020JD033539, https://doi.org/10.1029/2020JD033539.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., and X. Z. Liang, 2010: Improved terrestrial hydrologic representation in mesoscale land surface models. J. Hydrometeor., 11, 797809, https://doi.org/10.1175/2010JHM1221.1.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., P. Kumar, and X. Z. Liang, 2007: Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res., 43, W04414, https://doi.org/10.1029/2006WR005134.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015: Improving the representation of hydrologic processes in Earth system models. Water Resour. Res., 51, 59295956, https://doi.org/10.1002/2015WR017096.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. J., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 22812299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dantec-Nédélec, S., and Coauthors, 2017: Testing the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity analysis and site-level model calibration. J. Adv. Model. Earth Syst., 9, 12121230, https://doi.org/10.1002/2016MS000860.

    • Search Google Scholar
    • Export Citation
  • Deng, M., Meng, X., Lyv, Y., Zhao, L., Li, Z., Hu, Z., and Jing, H., 2020: Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions. J. Adv. Model. Earth Syst., 12, e2020MS002189, https://doi.org/10.1029/2020MS002189.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., S. Sorooshian, and V. K. Gupta, 1994: Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265284, https://doi.org/10.1016/0022-1694(94)90057-4.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., and Koven, C. D., 2020: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst., 12, e2018MS001453, https://doi.org/10.1029/2018MS001453.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gong, P., X. Li, and W. Zhang, 2019: 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull., 64, 756763, https://doi.org/10.1016/j.scib.2019.04.024.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. Boulange, X. D. Hong, S. N. Gosling, and Z. Fang, 2021: Globally observed trends in mean and extreme river flow attributed to climate change. Science, 371, 11591162, https://doi.org/10.1126/science.aba3996.

    • Search Google Scholar
    • Export Citation
  • Guo, J., and X. L. Su, 2019: Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrol. Res., 50, 861877, https://doi.org/10.2166/nh.2019.083.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • He, J., K. Yang, W. J. Tang, H. Lu, J. Qin, Y. Y. Chen, and X. Li, 2020: The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hulley, G., N. Malakar, and R. Freepartner, 2016: Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity Product (MxD21) Algorithm Theoretical Basis Document Collection-6. Jet Propulsion Laboratory California Institute of Technology Pasadena, 99 pp.

  • Ji, P., and X. Yuan, 2018: High-resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau: 2. Impact of climate and land cover change. J. Adv. Model. Earth Syst., 10, 28292843, https://doi.org/10.1029/2018MS001413.

    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, and X. Z. Liang, 2017: Do lateral flows matter for the hyperresolution land surface modeling? J. Geophys. Res. Atmos., 122, 12 07712 092, https://doi.org/10.1002/2017JD027366.

    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, and D. Li, 2020a: Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998–2013. J. Climate, 33, 18811895, https://doi.org/10.1175/JCLI-D-19-0410.1.

    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, Y. Jiao, C. Wang, S. Han, and C. Shi, 2020b: Anthropogenic contributions to the 2018 extreme flooding over upper Yellow River basin in China [in “Explaining Extreme Events of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 101 (1), S89S94, https://doi.org/10.1175/BAMS-D-19-0105.1.

    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, F. Ma, and M. Pan, 2020c: Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels. Hydrol. Earth Syst. Sci., 24, 54395451, https://doi.org/10.5194/hess-24-5439-2020.

    • Search Google Scholar
    • Export Citation
  • Ji, P., Yuan, X., Liang, X. Z., Jiao, Y., Zhou, Y., and Liu, Z., 2021: High‐resolution land surface modeling of the effect of long‐term urbanization on hydrothermal changes over Beijing metropolitan area. J. Geophys. Res. Atmos., 126, e2021JD034787, https://doi.org/10.1029/2021JD034787.

    • Search Google Scholar
    • Export Citation
  • Jia, B. H., J. G. Liu, Z. H. Xie, and C. X. Shi, 2018: Interannual variations and trends in remotely sensed and modeled soil moisture in China. J. Hydrometeor., 19, 831847, https://doi.org/10.1175/JHM-D-18-0003.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, L. M., P. Wang, L. X. Zhang, H. Yang, and J. T. Yang, 2014: Improvement of snow depth retrieval for FY3B-MWRI in China. Sci. China Earth Sci., 57, 12781292, https://doi.org/10.1007/s11430-013-4798-8.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and R. M. Maxwell, 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, https://doi.org/10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Li, B. L., and Coauthors, 2019: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res., 55, 75647586, https://doi.org/10.1029/2018WR024618.

    • Search Google Scholar
    • Export Citation
  • Li, D., S. Malyshev, and E. Shevliakova, 2016: Exploring historical and future urban climate in the Earth system modeling framework: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 8, 917935, https://doi.org/10.1002/2015MS000578.

    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Li, H.-Y., M. Huang, M. S. Wigmosta, Y. Ke, A. M. Coleman, L. R. Leung, A. Wang, and D. M. Ricciuto, 2011: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res., 116, D24120, https://doi.org/10.1029/2011JD016276.

    • Search Google Scholar
    • Export Citation
  • Li, Q., T. Yang, and L. Li, 2022: Evaluation of snow depth and snow cover represented by multiple datasets over the Tianshan Mountains: Remote sensing, reanalysis, and simulation. Int. J. Climatol., 42, 42234239, https://doi.org/10.1002/joc.7459.

    • Search Google Scholar
    • Export Citation
  • Liang, M., and X. Yuan, 2021: Critical role of soil moisture memory in predicting the 2012 central United States flash drought. Front. Earth Sci., 9, 615969, https://doi.org/10.3389/feart.2021.615969.

    • Search Google Scholar
    • Export Citation
  • Liang, S., and Coauthors, 2021: The Global Land Surface Satellite (GLASS) products suite. Bull. Amer. Meteor. Soc., 102, E323E337, https://doi.org/10.1175/BAMS-D-18-0341.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., and Coauthors, 2012: Regional climate-weather research and forecasting model. Bull. Amer. Meteor. Soc., 93, 13631387, https://doi.org/10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., X. Yuan, J. Zeng, Y. Jiao, Y. Li, L. Zhong, and L. Yao, 2022: Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci., 26, 265278, https://doi.org/10.5194/hess-26-265-2022.

    • Search Google Scholar
    • Export Citation
  • Liu, L., Y. M. Ma, M. Menenti, X. Z. Zhang, and W. Q. Ma, 2019: Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 209226, https://doi.org/10.1029/2018JD029208.

    • Search Google Scholar
    • Export Citation
  • Liu, L., M. Menenti, Y. M. Ma, and W. Q. Ma, 2022: Improved parameterization of snow albedo in WRF + Noah: Methodology based on a severe snow event on the Tibetan Plateau. Adv. Atmos. Sci., 39, 10791102, https://doi.org/10.1007/s00376-022-1232-1.

    • Search Google Scholar
    • Export Citation
  • Ma, N., and Y. Zhang, 2022: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteor., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887.

    • Search Google Scholar
    • Export Citation
  • Ma, X., J. Jin, L. Zhu, and J. Liu, 2021: Evaluating and improving simulations of diurnal variation in land surface temperature with the Community Land Model for the Tibetan Plateau. PeerJ, 9, e11040, https://doi.org/10.7717/peerj.11040.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2020: A long-term (2005–2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data, 12, 29372957, https://doi.org/10.5194/essd-12-2937-2020.

    • Search Google Scholar
    • Export Citation
  • Malik, M. J., R. van der Velde, Z. Vekerdy, and Z. B. Su, 2014: Improving modeled snow albedo estimates during the spring melt season. J. Geophys. Res. Atmos., 119, 73117331, https://doi.org/10.1002/2013JD021344.

    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and L. E. Condon, 2016: Connection between groundwater flow and transpiration partitioning. Science, 353, 377380, https://doi.org/10.1126/science.aaf7891.

    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Search Google Scholar
    • Export Citation
  • McNorton, J. R., and Coauthors, 2021: An urban scheme for the ECMWF integrated forecasting system: Single-column and global offline application. J. Adv. Model. Earth Syst., 13, e2020MS002375, https://doi.org/10.1029/2020MS002375.

    • Search Google Scholar
    • Export Citation
  • Meng, S., X. Xie, B. Zhu, and Y. Wang, 2020: The relative contribution of vegetation greening to the hydrological cycle in the Three-North region of China: A modelling analysis. J. Hydrol., 591, 125689, https://doi.org/10.1016/j.jhydrol.2020.125689.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. de Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Sabater, J., and Coauthors, 2021: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, 43494383, https://doi.org/10.5194/essd-13-4349-2021.

    • Search Google Scholar
    • Export Citation
  • Naz, B. S., S. Kollet, H. H. Franssen, C. Montzka, and W. Kurtz, 2020: A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data, 7, 111, https://doi.org/10.1038/s41597-020-0450-6.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, 2001: Predicting the discharge of global river. J. Climate, 14, 33073323, https://doi.org/10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., C. Paniconi, P. A. Troch, R. L. Scott, M. Durcik, X. Zeng, T. Huxman, and D. C. Goodrich, 2014: An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrology, 7, 427439, https://doi.org/10.1002/eco.1362.

    • Search Google Scholar
    • Export Citation
  • Niu, Z., H. He, G. Zhu, X. Ren, L. Zhang, and K. Zhang, 2020: A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Sci. Data, 7, 369, https://doi.org/10.1038/s41597-020-00693-x.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, https://doi.org/10.1175/2007JAMC1597.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

  • Orsolini, Y., and Coauthors, 2019: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere, 13, 22212239, https://doi.org/10.5194/tc-13-2221-2019.

    • Search Google Scholar
    • Export Citation
  • Pan, M., A. K. Sahoo, and E. F. Wood, 2014: Improving soil moisture retrievals from a physically-based radiative transfer model. Remote Sens. Environ., 140, 130140, https://doi.org/10.1016/j.rse.2013.08.020.

    • Search Google Scholar
    • Export Citation
  • Peng, S., S. Piao, P. Ciais, J. Fang, and X. Wang, 2010: Change in winter snow depth and its impacts on vegetation in China. Global Change Biol., 16, 30043013, https://doi.org/10.1111/j.1365-2486.2010.02210.x.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004: Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975, https://doi.org/10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rouf, T., Y. Mei, V. Maggioni, P. Houser, and M. Noonan, 2020: A physically based atmospheric variables downscaling technique. J. Hydrometeor., 21, 93108, https://doi.org/10.1175/JHM-D-19-0109.1.

    • Search Google Scholar
    • Export Citation
  • Rouf, T., V. Maggioni, Y. Mei, and P. Houser, 2021: Towards hyper-resolution land-surface modeling of surface and root zone soil moisture. J. Hydrol., 594, 125945, https://doi.org/10.1016/j.jhydrol.2020.125945.

    • Search Google Scholar
    • Export Citation
  • Santamouris, M., 2020: Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build., 207, 109482, https://doi.org/10.1016/j.enbuild.2019.109482.

    • Search Google Scholar
    • Export Citation
  • Sehgal, A., and Coauthors, 2018: Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant. Sci., 9, 1705, https://doi.org/10.3389/fpls.2018.01705.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shangguan, W., Y. J. Dai, Q. Y. Duan, B. Y. Liu, and H. Yuan, 2014: A global soil data set for Earth system modeling. J. Adv. Model. Earth Syst., 6, 249263, https://doi.org/10.1002/2013MS000293.

    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., and Coauthors, 2020: Assessing the impact of soil layer depth specification on the observability of modeled soil moisture and brightness temperature. J. Hydrometeor., 21, 20412060, https://doi.org/10.1175/JHM-D-19-0280.1.

    • Search Google Scholar
    • Export Citation
  • Shi, C. X., Z. H. Xie, H. Qian, M. L. Liang, and X. C. Yang, 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 14301440, https://doi.org/10.1007/s11430-010-4160-3.

    • Search Google Scholar
    • Export Citation
  • Singh, R. S., J. T. Reager, N. L. Miller, and J. S. Famiglietti, 2015: Toward hyper-resolution land-surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations over the southwestern U.S. Water Resour. Res., 51, 26482667, https://doi.org/10.1002/2014WR015686.

    • Search Google Scholar
    • Export Citation
  • Sirisena, T. A. J. G., S. Maskey, R. Ranasinghe, and M. S. Babel, 2018: Effects of different precipitation inputs on streamflow simulation in the Irrawaddy River Basin, Myanmar. J. Hydrol. Reg. Stud., 19, 265278, https://doi.org/10.1016/j.ejrh.2018.10.005.

    • Search Google Scholar
    • Export Citation
  • Song, L., Q. Zhuang, Y. Yin, X. Zhu, and S. Wu, 2017: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ. Res. Lett., 12, 014011, https://doi.org/10.1088/1748-9326/aa527d.

    • Search Google Scholar
    • Export Citation
  • Song, S., Z. Cao, Z. Wu, and X. Chuai, 2021: Spatial and temporal dynamics of surface water in China from the 1980s to 2015 based on remote sensing monitoring. Chin. Geogr. Sci., 32, 174188, https://doi.org/10.1007/s11769-021-1252-2.

    • Search Google Scholar
    • Export Citation
  • Strauch, M., C. Bernhofer, S. Koide, M. Volk, C. Lorz, and F. Makeschin, 2012: Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol., 414–415, 413424, https://doi.org/10.1016/j.jhydrol.2011.11.014.

    • Search Google Scholar
    • Export Citation
  • Sun, S., C. Shi, Y. Pan, L. Bai, B. Xu, T. Zhang, S. Han, and L. Jiang, 2020: Applicability assessment of the 1998–2018 CLDAS multi-source precipitation fusion dataset over China. J. Meteor. Res., 34, 879892, https://doi.org/10.1007/s13351-020-9101-2.

    • Search Google Scholar
    • Export Citation
  • Toure, A. M., M. Rodell, Z. L. Yang, H. Beaudoing, E. Kim, Y. F. Zhang, and Y. W. Kwon, 2016: Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeor., 17, 153170, https://doi.org/10.1175/JHM-D-14-0165.1.

    • Search Google Scholar
    • Export Citation
  • Tran, H., J. Zhang, M. M. O’Neill, A. Ryken, L. E. Condon, and R. M. Maxwell, 2022: A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Sci. Data, 9, 16, https://doi.org/10.1038/s41597-022-01123-w.

    • Search Google Scholar
    • Export Citation
  • Tsai, W. P., D. P. Feng, M. Pan, H. Beck, K. Lawson, Y. Yang, J. T. Liu, and C. P. Shen, 2021: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nat. Commun., 12, 5988, https://doi.org/10.1038/s41467-021-26107-z.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2013: Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA, 110, 5257, https://doi.org/10.1073/pnas.1207068110.

    • Search Google Scholar
    • Export Citation
  • Wang, A. H., and X. L. Shi, 2019: A multilayer soil moisture dataset based on the gravimetric method in China and its characteristics. J. Hydrometeor., 20, 17211736, https://doi.org/10.1175/JHM-D-19-0035.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A. H., X. B. Zeng, and D. L. Guo, 2016: Estimates of global surface hydrology and heat fluxes from the Community Land Model (CLM4.5) with four atmospheric forcing datasets. J. Hydrometeor., 17, 24932510, https://doi.org/10.1175/JHM-D-16-0041.1.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090.

    • Search Google Scholar
    • Export Citation
  • Wu, J. and Gao, X. J., 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. Chin., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., H. Feng, H. He, J. Zhou, and Y. Zhang, 2021: Evaluation of soil moisture climatology and anomaly components derived from ERA5-Land and GLDAS-2.1 in China. Water Resour. Manage., 35, 629643, https://doi.org/10.1007/s11269-020-02743-w.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Z. Hao, C. Shi, Y. Li, J. Meng, T. Xu, X. Wu, and B. Zhang, 2019: Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteor. Res., 33, 159189, https://doi.org/10.1007/s13351-019-8172-4.

    • Search Google Scholar
    • Export Citation
  • Xiang, K., W. Yuan, L. Wang, and Y. Deng, 2020: An LSWI-based method for mapping irrigated areas in China using moderate-resolution satellite data. Remote Sens., 12, 4181, https://doi.org/10.3390/rs12244181.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., and Coauthors, 2020: Land surface model CAS-LSM: Model description and evaluation. J. Adv. Model. Earth Syst., 12, e2020MS002339, https://doi.org/10.1029/2020MS002339.

    • Search Google Scholar
    • Export Citation
  • Yang, F., and Coauthors, 2017: Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci., 21, 58055821, https://doi.org/10.5194/hess-21-5805-2017.

    • Search Google Scholar
    • Export Citation
  • Yang, J. W., L. M. Jiang, J. Lemmetyinen, J. M. Pan, K. Luojus, and M. Takala, 2021: Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach. Remote Sens. Environ., 264, 112630, https://doi.org/10.1016/j.rse.2021.112630.

    • Search Google Scholar
    • Export Citation
  • Yang, T., Q. Li, X. Chen, R. Hamdi, P. De Maeyer, A. Kurban, and L. Li, 2020: Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains, Central Asia. J. Hydrol., 590, 125525, https://doi.org/10.1016/j.jhydrol.2020.125525.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2019: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Amer. Meteor. Soc., 100, 423444, https://doi.org/10.1175/BAMS-D-17-0057.1.

    • Search Google Scholar
    • Export Citation
  • You, Q. L., and Coauthors, 2020: Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Sci. Rev., 201, 103043, https://doi.org/10.1016/j.earscirev.2019.103043.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan, 2011: Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens. Environ., 115, 11711187, https://doi.org/10.1016/j.rse.2011.01.001.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and X. Z. Liang, 2011: Evaluation of a Conjunctive Surface-Subsurface Process Model (CSSP) over the contiguous United States at regional-local scales. J. Hydrometeor., 12, 579599, https://doi.org/10.1175/2010JHM1302.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., F. Ma, L. Wang, Z. Zheng, Z. Ma, A. Ye, and S. Peng, 2016: An experimental seasonal hydrological forecasting system over the Yellow River basin-Part 1: Understanding the role of initial hydrological conditions. Hydrol. Earth Syst. Sci., 20, 24372451, https://doi.org/10.5194/hess-20-2437-2016.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and Coauthors, 2018: High‐resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 10, 28062828, https://doi.org/10.1029/2018MS001412.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., L. Wang, P. Wu, P. Ji, J. Sheffield, and M. Zhang, 2019: Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun., 10, 4661, https://doi.org/10.1038/s41467-019-12692-7.

    • Search Google Scholar
    • Export Citation
  • Zeng, J., X. Yuan, P. Ji, and C. Shi, 2021: Effects of meteorological forcings and land surface model on soil moisture simulation over China. J. Hydrol., 603, 126978, https://doi.org/10.1016/j.jhydrol.2021.126978.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., Z. Xie, Y. Yu, S. Liu, L. Wang, J. Zou, P. Qin, and B. Jia, 2016: Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J. Adv. Model. Earth Syst., 8, 11061131, https://doi.org/10.1002/2016MS000646.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and X. Yuan, 2020: Crucial role of natural processes in detecting human influence on evapotranspiration by multisource data analysis. J. Hydrol., 580, 124350, https://doi.org/10.1016/j.jhydrol.2019.124350.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., X. Yuan, J. Otkin, and P. Ji, 2022: Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environ. Res. Lett., 17, 054041, https://doi.org/10.1088/1748-9326/ac69fb.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. P., T. G. Liang, Q. S. Feng, X. D. Huang, W. Wang, H. J. Xie, and J. Guo, 2017: Evaluation and adjustment of the AMSR2 snow depth algorithm for the northern Xinjiang region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 38923903, https://doi.org/10.1109/JSTARS.2016.2620521.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., X. X. Lu, D. L. Higgitt, C.-T. A. Chen, J. Han, and H. Sun, 2008: Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global Planet. Change, 60, 365380, https://doi.org/10.1016/j.gloplacha.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., K. Wang, and B. Boehrer, 2020: Variability in observed snow depth over China from 1960 to 2014. Int. J. Climatol., 41, 374392, https://doi.org/10.1002/joc.6625.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., R. Van Der Velde, Z. Su, J. Wen, and X. Wang, 2017: Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. J. Geophys. Res. Atmos., 122, 14881504, https://doi.org/10.1002/2016JD025572.

    • Search Google Scholar
    • Export Citation
  • Zheng, Hu., Z.-L. Yang, P. Lin, J. Wei, W.-Y. Wu, L. Li, L. Zhao, and S. Wang, 2019a: On the sensitivity of the precipitation partitioning into evapotranspiration and runoff in land surface parameterizations. Water Resour. Res., 55, 95111, https://doi.org/10.1029/2017WR022236.

    • Search Google Scholar
    • Export Citation
  • Zheng, Ha., H. Lin, and X. Zhu, 2019b: Spatiotemporal Patterns of Terrestrial Evapotranspiration in Response to Climate and Vegetation Coverage Changes across the Chinese Loess Plateau. Water, 11, 1625, https://doi.org/10.3390/w11081625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 604 604 114
Full Text Views 239 239 16
PDF Downloads 314 314 22

A Long-Term Simulation of Land Surface Conditions at High Resolution over Continental China

Peng JiaKey Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
bSchool of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Peng Ji in
Current site
Google Scholar
PubMed
Close
,
Xing YuanaKey Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
bSchool of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xing Yuan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6983-7368
,
Chunxiang ShicNational Meteorological Information Center, China Meteorological Administration, Beijing, China

Search for other papers by Chunxiang Shi in
Current site
Google Scholar
PubMed
Close
,
Lipeng JiangdCMA Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration, Beijing, China

Search for other papers by Lipeng Jiang in
Current site
Google Scholar
PubMed
Close
,
Guoqing WangeState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China

Search for other papers by Guoqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Kun YangfMinistry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With the improvement of meteorological forcings and surface parameters, high-resolution land surface modeling is expected to provide locally relevant information. Yet, its added value over the state-of-the-art global reanalysis products requires long-term evaluations over large areas, given uneven climate warming and significant land cover change. Here, the Conjunctive Surface–Subsurface Process version 2 (CSSPv2) model, with a reasonable representation of runoff generation, subgrid soil moisture variability and urban dynamics, is calibrated and used to perform a 6-km resolution simulation over China during 1979–2017. Evaluations against observations at thousands of stations and several satellite-based products show that the CSSPv2 has 67%, 29%, and 15% lower simulation errors for snow depth, evapotranspiration (ET), and surface and root-zone soil moisture, respectively, than nine global products. The median Kling–Gupta efficiency of the streamflow for 83 river basins is 0.66 after bulk calibrations, which is 0.38 higher than that of global datasets. The CSSPv2 also accurately simulates urban heat islands (UHIs) and the patterns and magnitudes of long-term snow depth, ET, and soil moisture trends. However, the global products do not detect UHIs and overestimate the trends (or show opposite trends) of snow depth and ET. Sensitivity experiments with coarse-resolution forcings and surface parameters reveal that advanced model physics and high-resolution surface parameters are vital for improved simulations of snow depth, ET, soil moisture, and UHIs, whereas high-resolution meteorological forcings are critical for modeling long-term trends. Our research emphasizes the substantial added value of long-term high-resolution land surface modeling to present global products at continental scales.

Significance Statement

Highly heterogeneous changes of terrestrial water and energy require kilometer-scale land surface information for the adaptation. High-resolution land surface modeling has been regarded as a promising approach to provide locally relevant information, but most applications are limited to a small region or a short period. By performing sets of 6-km resolution simulations over China during 1979–2017 with the Conjunctive Surface–Subsurface Process version 2 land model, here we show that high-resolution modeling has 15%–67% lower simulation errors of snow depth, streamflow, evapotranspiration, and soil moisture than nine global products, and the improvement is mainly attributed to the advances in model physical parameterizations and high-resolution surface parameters. Our results emphasize the great added value of kilometer-scale land surface modeling at continental scales.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xing Yuan, xyuan@nuist.edu.cn

Abstract

With the improvement of meteorological forcings and surface parameters, high-resolution land surface modeling is expected to provide locally relevant information. Yet, its added value over the state-of-the-art global reanalysis products requires long-term evaluations over large areas, given uneven climate warming and significant land cover change. Here, the Conjunctive Surface–Subsurface Process version 2 (CSSPv2) model, with a reasonable representation of runoff generation, subgrid soil moisture variability and urban dynamics, is calibrated and used to perform a 6-km resolution simulation over China during 1979–2017. Evaluations against observations at thousands of stations and several satellite-based products show that the CSSPv2 has 67%, 29%, and 15% lower simulation errors for snow depth, evapotranspiration (ET), and surface and root-zone soil moisture, respectively, than nine global products. The median Kling–Gupta efficiency of the streamflow for 83 river basins is 0.66 after bulk calibrations, which is 0.38 higher than that of global datasets. The CSSPv2 also accurately simulates urban heat islands (UHIs) and the patterns and magnitudes of long-term snow depth, ET, and soil moisture trends. However, the global products do not detect UHIs and overestimate the trends (or show opposite trends) of snow depth and ET. Sensitivity experiments with coarse-resolution forcings and surface parameters reveal that advanced model physics and high-resolution surface parameters are vital for improved simulations of snow depth, ET, soil moisture, and UHIs, whereas high-resolution meteorological forcings are critical for modeling long-term trends. Our research emphasizes the substantial added value of long-term high-resolution land surface modeling to present global products at continental scales.

Significance Statement

Highly heterogeneous changes of terrestrial water and energy require kilometer-scale land surface information for the adaptation. High-resolution land surface modeling has been regarded as a promising approach to provide locally relevant information, but most applications are limited to a small region or a short period. By performing sets of 6-km resolution simulations over China during 1979–2017 with the Conjunctive Surface–Subsurface Process version 2 land model, here we show that high-resolution modeling has 15%–67% lower simulation errors of snow depth, streamflow, evapotranspiration, and soil moisture than nine global products, and the improvement is mainly attributed to the advances in model physical parameterizations and high-resolution surface parameters. Our results emphasize the great added value of kilometer-scale land surface modeling at continental scales.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xing Yuan, xyuan@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.09 MB)
Save