The Impacts of Interannual Climate Variability on the Declining Trend in Terrestrial Water Storage over the Tigris–Euphrates River Basin

Li-Ling Chang aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts

Search for other papers by Li-Ling Chang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5441-0457
and
Guo-Yue Niu bDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Guo-Yue Niu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tigris–Euphrates dryland river basin has experienced a declining trend in terrestrial water storage (TWS) from April 2002 to June 2017. Using satellite observations and a process-based land surface model, we find that climate variations and direct human interventions explain ∼61% (−0.57 mm month−1) and ∼39% (−0.36 mm month−1) of the negative trend, respectively. We further disaggregate the effects of climate variations and find that interannual climate variability contributes substantially (−0.27 mm month−1) to the negative TWS trend, slightly greater than the decadal climate change (−0.25 mm month−1). Interannual climate variability affects TWS mainly through the nonlinear relationship between monthly TWS dynamics and aridity. Slow recovery of TWS during short wetting periods does not compensate for rapid depletion of TWS through transpiration during prolonged drying periods. Despite enhanced water stress, the dryland ecosystems show slightly enhanced resilience to water stress through greater partitioning of evapotranspiration into transpiration and weak surface “greening” effects. However, the dryland ecosystems are vulnerable to drought impacts. The basin shows straining ecosystem functioning after experiencing a severe drought event. In addition, after the onset of the drought, the dryland ecosystem becomes more sensitive to variations in climate conditions.

Significance Statement

The purpose of the research is to better understand climate impacts on terrestrial water storage over dryland regions with declining water storage. In our study, we disaggregate three components of climate impacts, namely, decadal climate change, interannual variability, and intra-annual variability. We then use observational datasets and a process-based model to quantify their individual effects on water storage. We find that interannual variability is the most significant climatic contributor to the declining water storage, mainly caused by prolonged drought periods and corresponding quick drying rates due to plant transpiration. We also find that the dryland ecosystem is sensitive and vulnerable to severe drought events. This study is important because 1) it provides a framework to investigate climate impacts on water fluxes and storages, 2) it highlights the importance of vegetation dynamics on dryland hydrology, and 3) it emphasizes the negative impacts of extreme hydroclimatological events on ecosystem functioning.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guo-Yue Niu, niug@email.arizona.edu

Abstract

The Tigris–Euphrates dryland river basin has experienced a declining trend in terrestrial water storage (TWS) from April 2002 to June 2017. Using satellite observations and a process-based land surface model, we find that climate variations and direct human interventions explain ∼61% (−0.57 mm month−1) and ∼39% (−0.36 mm month−1) of the negative trend, respectively. We further disaggregate the effects of climate variations and find that interannual climate variability contributes substantially (−0.27 mm month−1) to the negative TWS trend, slightly greater than the decadal climate change (−0.25 mm month−1). Interannual climate variability affects TWS mainly through the nonlinear relationship between monthly TWS dynamics and aridity. Slow recovery of TWS during short wetting periods does not compensate for rapid depletion of TWS through transpiration during prolonged drying periods. Despite enhanced water stress, the dryland ecosystems show slightly enhanced resilience to water stress through greater partitioning of evapotranspiration into transpiration and weak surface “greening” effects. However, the dryland ecosystems are vulnerable to drought impacts. The basin shows straining ecosystem functioning after experiencing a severe drought event. In addition, after the onset of the drought, the dryland ecosystem becomes more sensitive to variations in climate conditions.

Significance Statement

The purpose of the research is to better understand climate impacts on terrestrial water storage over dryland regions with declining water storage. In our study, we disaggregate three components of climate impacts, namely, decadal climate change, interannual variability, and intra-annual variability. We then use observational datasets and a process-based model to quantify their individual effects on water storage. We find that interannual variability is the most significant climatic contributor to the declining water storage, mainly caused by prolonged drought periods and corresponding quick drying rates due to plant transpiration. We also find that the dryland ecosystem is sensitive and vulnerable to severe drought events. This study is important because 1) it provides a framework to investigate climate impacts on water fluxes and storages, 2) it highlights the importance of vegetation dynamics on dryland hydrology, and 3) it emphasizes the negative impacts of extreme hydroclimatological events on ecosystem functioning.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guo-Yue Niu, niug@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.67 MB)
Save
  • Ahlström, A., and Coauthors, 2015:The dominant role of semiarid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895899, https://doi.org/10.1126/science.aaa1668.

    • Search Google Scholar
    • Export Citation
  • Alipour, S., M. Motgah, M. A. Sharifi, and T. R. Walter, 2008: InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, Napoli, Italy, Institute of Electrical and Electronics Engineers, 1–5, https://doi.org/10.1109/USEREST.2008.4740370.

  • Ashraf, S., A. Nazemi, and A. AghaKouchak, 2021:Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep., 11, 9135, https://doi.org/10.1038/s41598-021-88522-y.

    • Search Google Scholar
    • Export Citation
  • Asoka, A., and V. Mishra, 2020:Anthropogenic and climate contributions on the changes in terrestrial water storage in India. J. Geophys. Res. Atmos., 125, e2020JD032470, https://doi.org/10.1029/2020JD032470.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., B. Zaitchik, S. Paz, E. Black, J. Evans, and A. Hoell, 2016:A review of drought in the Middle East and southwest Asia. J. Climate, 29, 85478574, https://doi.org/10.1175/JCLI-D-13-00692.1.

    • Search Google Scholar
    • Export Citation
  • Best, J., 2019:Anthropogenic stresses on the world’s big rivers. Nat. Geosci., 12, 721, https://doi.org/10.1038/s41561-018-0262-x.

  • Bozkurt, D., and O. L. Sen, 2013:Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. J. Hydrol., 480, 149161, https://doi.org/10.1016/j.jhydrol.2012.12.021.

    • Search Google Scholar
    • Export Citation
  • Chang, L. L., R. Yuan, H. V. Gupta, C. L. Winter, and G. Y. Niu, 2020:Why is the terrestrial water storage in dryland regions declining? A perspective based on gravity recovery and climate experiment satellite observations and Noah land surface model with multiparameterization schemes model simulations. Water Resour. Res., 56, e2020WR027102, https://doi.org/10.1029/2020WR027102.

    • Search Google Scholar
    • Export Citation
  • Chao, N., Z. Luo, Z. Wang, and T. Jin, 2018:Retrieving groundwater depletion and drought in the Tigris‐Euphrates Basin between 2003 and 2015. Ground Water, 56, 770782, https://doi.org/10.1111/gwat.12611.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, D. Blankenship, and B. D. Tapley, 2009:Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2, 859862, https://doi.org/10.1038/ngeo694.

    • Search Google Scholar
    • Export Citation
  • Chenoweth, J., P. Hadjinicolaou, A. Bruggeman, J. Lelieveld, Z. Levin, M. A. Lange, E. Xoplaki, and M. Hadjikakou, 2011:Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour. Res., 47, W06506, https://doi.org/10.1029/2010WR010269.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978:Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Search Google Scholar
    • Export Citation
  • Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning, 1990:STL: A seasonal-trend decomposition. J. Off. Stat., 6, 373.

  • Cullen, H. M., A. Kaplan, P. A. Arkin, and P. B. Demenocal, 2002:Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Climatic Change, 55, 315338, https://doi.org/10.1023/A:1020518305517.

    • Search Google Scholar
    • Export Citation
  • Delgado-Baquerizo, M., and Coauthors, 2013:Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672676, https://doi.org/10.1038/nature12670.

    • Search Google Scholar
    • Export Citation
  • Döll, P., 2002:Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change, 54, 269293, https://doi.org/10.1023/A:1016124032231.

    • Search Google Scholar
    • Export Citation
  • Döll, P., H. Müller Schmied, C. Schuh, F. T. Portmann, and A. Eicker, 2014:Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res., 50, 56985720, https://doi.org/10.1002/2014WR015595.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., 2014:The global groundwater crisis. Nat. Climate Change, 4, 945948, https://doi.org/10.1038/nclimate2425.

  • Fan, Y., G. Miguez-Macho, E. G. Jobbágy, R. B. Jackson, and C. Otero-Casal, 2017:Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA, 114, 10 57210 577, https://doi.org/10.1073/pnas.1712381114.

    • Search Google Scholar
    • Export Citation
  • FAO, 2009: AQUASTAT Transboundary River Basins – Euphrates-Tigris River Basin. FAO AQUASTAT Rep., 14 pp., https://www.fao.org/3/CA2132EN/ca2132en.pdf.

  • Felfelani, F., Y. Wada, L. Longuevergne, and Y. N. Pokhrel, 2017:Natural and human‐induced terrestrial water storage change: A global analysis using hydrological models and GRACE. J. Hydrol., 553, 105118, https://doi.org/10.1016/j.jhydrol.2017.07.048.

    • Search Google Scholar
    • Export Citation
  • Fensholt, R., and Coauthors, 2012:Greenness in semi-arid areas across the globe 1981–2007—An Earth observing satellite based analysis of trends and drivers. Remote Sens. Environ., 121, 144158, https://doi.org/10.1016/j.rse.2012.01.017.

    • Search Google Scholar
    • Export Citation
  • Forootan, E., R. Rietbroek, J. Kusche, M. A. Sharifi, J. L. Awange, M. Schmidt, P. Omondi, and J. Famiglietti, 2014:Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens. Environ., 140, 580595, https://doi.org/10.1016/j.rse.2013.09.025.

    • Search Google Scholar
    • Export Citation
  • Forootan, E., A. Safari, A. Mostafaie, M. Schumacher, M. Delavar, and J. L. Awange, 2017:Large-scale total water storage and water flux changes over the arid and semiarid parts of the Middle East from GRACE and reanalysis products. Surv. Geophys., 38, 591615, https://doi.org/10.1007/s10712-016-9403-1.

    • Search Google Scholar
    • Export Citation
  • Gleeson, T., Y. Wada, M. F. Bierkens, and L. P. van Beek, 2012:Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197200, https://doi.org/10.1038/nature11295.

    • Search Google Scholar
    • Export Citation
  • Green, J. K., S. I. Seneviratne, A. M. Berg, K. L. Findell, S. Hagemann, D. M. Lawrence, and P. Gentine, 2019:Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565, 476479, https://doi.org/10.1038/s41586-018-0848-x.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2014:Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 32513256, https://doi.org/10.1073/pnas.1222475110.

    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O., and Coauthors, 2018: Impacts of 1.5°C global warming on natural and human systems. Global Warming of 1.5°C, V. Masson-Delmotte et al., Eds., Cambridge University Press, 175–312.

  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012:Drought indicators based on model‐assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Search Google Scholar
    • Export Citation
  • Humphrey, V., J. Zscheischler, P. Ciais, L. Gudmundsson, S. Sitch, and S. I. Seneviratne, 2018:Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 560, 628631, https://doi.org/10.1038/s41586-018-0424-4.

    • Search Google Scholar
    • Export Citation
  • Huxman, T. E., and Coauthors, 2004:Convergence across biomes to a common rain-use efficiency. Nature, 429, 651654, https://doi.org/10.1038/nature02561.

    • Search Google Scholar
    • Export Citation
  • Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, 2012:Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518, https://doi.org/10.1038/nature10847.

    • Search Google Scholar
    • Export Citation
  • Jensen, L., R. Rietbroek, and J. Kusche, 2013:Land water contribution to sea level from GRACE and Jason‐1 measurements. J. Geophys. Res. Oceans, 118, 212226, https://doi.org/10.1002/jgrc.20058.

    • Search Google Scholar
    • Export Citation
  • Joodaki, G., J. Wahr, and S. Swenson, 2014:Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res., 50, 26792692, https://doi.org/10.1002/2013WR014633.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010:Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011:Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Kaniewski, D., E. Van Campo, and H. Weiss, 2012:Drought is a recurring challenge in the Middle East. Proc. Natl. Acad. Sci. USA, 109, 38623867, https://doi.org/10.1073/pnas.1116304109.

    • Search Google Scholar
    • Export Citation
  • Kelley, C. P., S. Mohtadi, M. A. Cane, R. Seager, and Y. Kushnir, 2015:Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA, 112, 32413246, https://doi.org/10.1073/pnas.1421533112.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012:Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and Coauthors, 2012:Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change, 114, 667687, https://doi.org/10.1007/s10584-012-0418-4.

    • Search Google Scholar
    • Export Citation
  • Loomis, B. D., S. B. Luthcke, and T. J. Sabaka, 2019:Regularization and error characterization of GRACE mascons. J. Geod., 93, 13811398, https://doi.org/10.1007/s00190-019-01252-y.

    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., T. J. Sabaka, B. D. Loomis, A. A. Arendt, J. J. McCarthy, and J. Camp, 2013:Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613631, https://doi.org/10.3189/2013JoG12J147.

    • Search Google Scholar
    • Export Citation
  • Macklin, M. G., and J. Lewin, 2015:The rivers of civilization. Quat. Sci. Rev., 114, 228244, https://doi.org/10.1016/j.quascirev.2015.02.004.

    • Search Google Scholar
    • Export Citation
  • Middleton, N., and D. Thomas, 1997: World Atlas of Desertification. 2nd ed. Oxford University Press, 192 pp.

  • Milly, P. C. D., and Coauthors, 2010: Terrestrial water-storage contributions to sea-level rise and variability. Understanding Sea-Level Rise and Variability, J. A. Church et al., Eds., Wiley, 226–255.

  • Mohamed, A., 2020:Gravity applications in estimating the mass variations in the Middle East: A case study from Iran. Arabian J. Geosci., 13, 364, https://doi.org/10.1007/s12517-020-05317-7.

    • Search Google Scholar
    • Export Citation
  • Motagh, M., T. R. Walter, M. A. Sharifi, E. Fielding, A. Schenk, J. Anderssohn, and J. Zschau, 2008:Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett., 35, L16403, https://doi.org/10.1029/2008GL033814.

    • Search Google Scholar
    • Export Citation
  • Ni, S., J. Chen, C. R. Wilson, J. Li, X. Hu, and R. Fu, 2018:Global terrestrial water storage changes and connections to ENSO events. Surv. Geophys., 39 (1), 122, https://doi.org/10.1007/s10712-017-9421-7.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007:Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011:The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., Y. H. Fang, L. L. Chang, J. Jin, H. Yuan, and X. Zeng, 2020:Enhancing the Noah‐MP ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake. J. Adv. Model. Earth Syst., 12, e2020MS002062, https://doi.org/10.1029/2020MS002062.

    • Search Google Scholar
    • Export Citation
  • Özdoğan, M., 2011:Climate change impacts on snow water availability in the Euphrates-Tigris basin. Hydrol. Earth Syst. Sci., 15, 27892803, https://doi.org/10.5194/hess-15-2789-2011.

    • Search Google Scholar
    • Export Citation
  • Phillips, T., R. S. Nerem, B. Fox‐Kemper, J. S. Famiglietti, and B. Rajagopalan, 2012:The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett., 39, L16705, https://doi.org/10.1029/2012GL052495.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y., and Coauthors, 2021:Global terrestrial water storage and drought severity under climate change. Nat. Climate Change, 11, 226233, https://doi.org/10.1038/s41558-020-00972-w.

    • Search Google Scholar
    • Export Citation
  • Ponce-Campos, G. E., and Coauthors, 2013:Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349352, https://doi.org/10.1038/nature11836.

    • Search Google Scholar
    • Export Citation
  • Rateb, A., B. R. Scanlon, and C.-Y. Kuo, 2021:Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ., 766, 144337, https://doi.org/10.1016/j.scitotenv.2020.144337.

    • Search Google Scholar
    • Export Citation
  • Reager, J. T., B. F. Thomas, and J. S. Famiglietti, 2014:River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci., 7, 588592, https://doi.org/10.1038/ngeo2203.

    • Search Google Scholar
    • Export Citation
  • Reager, J. T., A. S. Gardner, J. S. Famiglietti, D. N. Wiese, A. Eicker, and M. H. Lo, 2016:A decade of sea level rise slowed by climate-driven hydrology. Science, 351, 699703, https://doi.org/10.1126/science.aad8386.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004:The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009:Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M. H. Lo, 2018:Emerging trends in global freshwater availability. Nature, 557, 651659, https://doi.org/10.1038/s41586-018-0123-1.

    • Search Google Scholar
    • Export Citation
  • Sakumura, C., S. Bettadpur, and S. Bruinsma, 2014:Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett., 41, 13891397, https://doi.org/10.1002/2013GL058632.

    • Search Google Scholar
    • Export Citation
  • Saleh, S. A., N. Al-Ansari, and T. Abdullah, 2020:Groundwater hydrology in Iraq. J. Earth Sci. Geotech. Eng., 10, 155197.

  • Save, H., S. Bettadpur, and B. D. Tapley, 2016:High‐resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., Z. Zhang, H. Save, D. N. Wiese, F. W. Landerer, D. Long, L. Longuevergne, and J. Chen, 2016:Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res., 52, 94129429, https://doi.org/10.1002/2016WR019494.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., and Coauthors, 2018:Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA, 115, E1080E1089, https://doi.org/10.1073/pnas.1704665115.

    • Search Google Scholar
    • Export Citation
  • Śliwińska, J., M. Wińska, and J. Nastula, 2021:Validation of GRACE and GRACE-FO mascon data for the study of polar motion excitation. Remote Sens., 13, 1152, https://doi.org/10.3390/rs13061152.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., 2012: GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, accessed 24 September 2018, https://doi.org/10.5067/TELND-NC005.

  • Swenson, S. C., and J. Wahr, 2006:Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. M. Watkins, and C. Reigber, 2004:The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Taylor, R. G., and Coauthors, 2013:Ground water and climate change. Nat. Climate Change, 3, 322329, https://doi.org/10.1038/nclimate1744.

    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014:A GRACE‐based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, https://doi.org/10.1002/2014GL059323.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. F., and J. S. Famiglietti, 2019:Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep., 9, 4124, https://doi.org/10.1038/s41598-019-40155-y.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., C. M. Gouveia, and D. Barriopedro, 2010:The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. For. Meteor., 150, 12451257, https://doi.org/10.1016/j.agrformet.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • UN-ESCWA and BGR, 2013: Inventory of Shared Water Resources in Western Asia. United Nations, 606 pp.

  • Voss, K. A., J. S. Famiglietti, M. Lo, C. De Linage, M. Rodell, and S. C. Swenson, 2013:Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris‐Euphrates‐Western Iran region. Water Resour. Res., 49, 904914, https://doi.org/10.1002/wrcr.20078.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. Vasak, and M. F. P. Bierkens, 2010:Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., D. Wisser, and M. F. P. Bierkens, 2014:Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 1540, https://doi.org/10.5194/esd-5-15-2014.

    • Search Google Scholar
    • Export Citation
  • Watkins, M. M., D. N. Wiese, D.-N. Yuan, C. Boening, and F. W. Landerer, 2015:Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Search Google Scholar
    • Export Citation
  • Wolf, A. T., 1998:Conflict and cooperation along international waterways. Water Policy, 1, 251265, https://doi.org/10.1016/S1366-7017(98)00019-1.

    • Search Google Scholar
    • Export Citation
  • Yi, S., W. Sun, W. Feng, and J. Chen, 2016:Anthropogenic and climate‐driven water depletion in Asia. Geophys. Res. Lett., 43, 90619069, https://doi.org/10.1002/2016GL069985.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan, 2011:Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens. Environ., 115, 11711187, https://doi.org/10.1016/j.rse.2011.01.001.

    • Search Google Scholar
    • Export Citation
  • Yuan, R. Q., L. L. Chang, H. Gupta, and G. Y. Niu, 2019:Climatic forcing for recent significant terrestrial drying and wetting. Adv. Water Resour., 133, 103425, https://doi.org/10.1016/j.advwatres.2019.103425.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. Y., J. Jin, X. Zeng, C. P. Hawkins, A. A. Neto, and G. Y. Niu,. 2022:The compensatory CO2 fertilization and stomatal closure effects on runoff projection from 2016–2099 in the western United States. Water Resour. Res., 58, e2021WR030046, https://doi.org/10.1029/2021WR030046.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., W. J. Riley, J. Tang, N. Collier, F. M. Hoffman, X. Yang, and G. Bisht, 2019:Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking. J. Adv. Model. Earth Syst., 11, 22382258, https://doi.org/10.1029/2018MS001571.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016:Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1045 1045 63
Full Text Views 186 186 16
PDF Downloads 184 184 0