Evaluation of Snowfall Retrieval Performance of GPM Constellation Radiometers Relative to Spaceborne Radars

Yalei You aDepartment of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina

Search for other papers by Yalei You in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3585-0115
,
George Huffman bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George Huffman in
Current site
Google Scholar
PubMed
Close
,
Veljko Petkovic aDepartment of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina

Search for other papers by Veljko Petkovic in
Current site
Google Scholar
PubMed
Close
,
Lisa Milani bNASA Goddard Space Flight Center, Greenbelt, Maryland
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Lisa Milani in
Current site
Google Scholar
PubMed
Close
,
John X. Yang aDepartment of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina

Search for other papers by John X. Yang in
Current site
Google Scholar
PubMed
Close
,
Ardeshir Ebtehaj dDepartment of Civil Environmental and Geo-Engineering and the Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Ardeshir Ebtehaj in
Current site
Google Scholar
PubMed
Close
,
Sajad Vahedizade dDepartment of Civil Environmental and Geo-Engineering and the Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Sajad Vahedizade in
Current site
Google Scholar
PubMed
Close
, and
Guojun Gu aDepartment of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina

Search for other papers by Guojun Gu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers include six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detection and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors, primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11 sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product [i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons apply solely to the GPROF version 5 algorithm.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

This article is included in the Peter J. Lamb Special Collection: Climate Variability and Its Impacts Special Collection.

Corresponding author: Yalei You, youy@uncw.edu

Abstract

This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers include six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detection and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors, primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11 sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product [i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons apply solely to the GPROF version 5 algorithm.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

This article is included in the Peter J. Lamb Special Collection: Climate Variability and Its Impacts Special Collection.

Corresponding author: Yalei You, youy@uncw.edu
Save
  • Adhikari, A., M. R. Ehsani, Y. Song, and A. Behrangi, 2020: Comparative assessment of snowfall retrieval from microwave humidity sounders using machine learning methods. Earth Space Sci., 7, e2020EA001357, https://doi.org/10.1029/2020EA001357.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, https://doi.org/10.1002/2013WR014566.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. J. Bormann, and T. H. Painter, 2018: Using the airborne snow observatory to assess remotely sensed snowfall products in the California Sierra Nevada. Water Resour. Res., 54, 73317346, https://doi.org/10.1029/2018WR023108.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor. Climatol., 40, 345364, https://doi.org/10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casella, D., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, B. T. Johnson, and M. S. Kulie, 2017: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res., 197, 6475, https://doi.org/10.1016/j.atmosres.2017.06.018.

    • Search Google Scholar
    • Export Citation
  • Chen, F. W., and D. H. Staelin, 2003: AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41, 410417, https://doi.org/10.1109/TGRS.2002.808322.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2016: Comparison of snowfall estimates from the NASA CloudSat cloud profiling radar and NOAA/NSSL multi-radar multi-sensor system. J. Hydrol., 541, 862872, https://doi.org/10.1016/j.jhydrol.2016.07.047.

    • Search Google Scholar
    • Export Citation
  • Conner, M. D., and G. W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor. Climatol., 37, 679700, https://doi.org/10.1175/1520-0450(1998)037<0679:VAIOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eriksson, P., R. Ekelund, J. Mendrok, M. Brath, O. Lemke, and S. A. Buehler, 2018: A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths. Earth Syst. Sci. Data, 10, 13011326, https://doi.org/10.5194/essd-10-1301-2018.

    • Search Google Scholar
    • Export Citation
  • Foster, J. L., and Coauthors, 2012: Passive microwave remote sensing of the historic February 2010 snowstorms in the middle Atlantic region of the USA. Hydrol. Processes, 26, 34593471, https://doi.org/10.1002/hyp.8418.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S.-H. Yoo, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Kongoli, C., P. Pellegrino, R. R. Ferraro, N. C. Grody, and H. Meng, 2003: A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30, 1756, https://doi.org/10.1029/2003GL017177.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., H. Meng, J. Dong, and R. Ferraro, 2015: A snowfall detection algorithm over land utilizing high-frequency passive microwave measurements—Application to ATMS. J. Geophys. Res. Atmos., 120, 19181932, https://doi.org/10.1002/2014JD022427.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., H. Meng, J. Dong, and R. Ferraro, 2018: A hybrid snowfall detection method from satellite passive microwave measurements and global forecast weather models. Quart. J. Roy. Meteor. Soc., 144, 120132, https://doi.org/10.1002/qj.3270.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 48, 25642580, https://doi.org/10.1175/2009JAMC2193.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, https://doi.org/10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and Coauthors, 2021: Snowfall in the northern Great Lakes: Lessons learned from a multi-sensor observatory. Bull. Amer. Meteor. Soc., 102, E1317E1339, https://doi.org/10.1175/BAMS-D-19-0128.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., S. Laviola, and E. Cattani, 2011: Detection and measurement of snowfall from space. Remote Sens., 3, 145166, https://doi.org/10.3390/rs3010145.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and A. Y. Hou, 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. Climatol., 47, 31703187, https://doi.org/10.1175/2008JAMC1893.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008a: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, https://doi.org/10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008b: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and E.-K. Seo, 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos., 118, 13761387, https://doi.org/10.1002/jgrd.50172.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Kneifel, A. Battaglia, M. Hagen, L. Hirsch, and S. Crewell, 2011: A multisensor approach toward a better understanding of snowfall microphysics: The TOSCA project. Bull. Amer. Meteor. Soc., 92, 613628, https://doi.org/10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Mätzler, C., 1994: Passive microwave signatures of landscapes in winter. Meteor. Atmos. Phys., 54, 241260, https://doi.org/10.1007/BF01030063.

    • Search Google Scholar
    • Export Citation
  • Meng, H., J. Dong, R. Ferraro, B. Yan, L. Zhao, C. Kongoli, N.-Y. Wang, and B. Zavodsky, 2017: A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers. J. Geophys. Res. Atmos., 122, 65206540, https://doi.org/10.1002/2016JD026325.

    • Search Google Scholar
    • Export Citation
  • Michele, S. D., and P. Bauer, 2006: Passive microwave radiometer channel selection based on cloud and precipitation information content. Quart. J. Roy. Meteor. Soc., 132, 12991323, https://doi.org/10.1256/qj.05.164.

    • Search Google Scholar
    • Export Citation
  • Milani, L., and N. B. Wood, 2021: Biases in CloudSat falling snow estimates resulting from daylight-only operations. Remote Sens., 13, 2041, https://doi.org/10.3390/rs13112041.

    • Search Google Scholar
    • Export Citation
  • Milani, L., and Coauthors, 2021: Extreme lake-effect snow from a GPM microwave imager perspective: Observational analysis and precipitation retrieval evaluation. J. Atmos. Oceanic Technol., 38, 293311, https://doi.org/10.1175/JTECH-D-20-0064.1.

    • Search Google Scholar
    • Export Citation
  • Mroz, K., M. Montopoli, A. Battaglia, G. Panegrossi, P. Kirstetter, and L. Baldini, 2021: Cross validation of active and passive microwave snowfall products over the continental United States. J. Hydrometeor., 22, 12971315, https://doi.org/10.1175/JHM-D-20-0222.1.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and Coauthors, 2007: Snowfall measurements by proposed European GPM mission. Measuring Precipitation from Space, Springer, 655–674.

  • Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, https://doi.org/10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., G. Liu, E.-K. Seo, J. R. Wang, and K. Aonashi, 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, https://doi.org/10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., G. Liu, A. S. Jones, and T. H. Vonder Haar, 2009: Toward snowfall retrieval over land by combining satellite and in situ measurements. J. Geophys. Res., 114, D24205, https://doi.org/10.1029/2009JD012307.

    • Search Google Scholar
    • Export Citation
  • Norin, L., A. Devasthale, T. S. L’Ecuyer, N. B. Wood, and M. Smalley, 2015: Intercomparison of snowfall estimates derived from the CloudSat cloud profiling radar and the ground-based weather radar network over Sweden. Atmos. Meas. Tech., 8, 50095021, https://doi.org/10.5194/amt-8-5009-2015.

    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., J.-F. Rysman, D. Casella, A. C. Marra, P. Sanò, and M. S. Kulie, 2017: CloudSat-based assessment of GPM microwave imager snowfall observation capabilities. Remote Sens., 9, 1263, https://doi.org/10.3390/rs9121263.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, https://doi.org/10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. B. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, https://doi.org/10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Rysman, J.-F., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, L. Milani, and M. S. Kulie, 2018: SLALOM: An all-surface snow water path retrieval algorithm for the GPM microwave imager. Remote Sens., 10, 1278, https://doi.org/10.3390/rs10081278.

    • Search Google Scholar
    • Export Citation
  • Rysman, J.-F., and Coauthors, 2019: Retrieving surface snowfall with the GPM microwave imager: A new module for the SLALOM algorithm. Geophys. Res. Lett., 46, 13 59313 601, https://doi.org/10.1029/2019GL084576.

    • Search Google Scholar
    • Export Citation
  • Sadeghi, L., B. Saghafian, and S. Moazami, 2019: Evaluation of IMERG and MRMS remotely sensed snowfall products. Int. J. Remote Sens., 40, 41754192, https://doi.org/10.1080/01431161.2018.1562259.

    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and G. Liu, 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, https://doi.org/10.1175/JHM-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., and B. T. Johnson, 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, https://doi.org/10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., M.-J. Kim, J. A. Weinman, and D.-E. Chang, 2004: A physical model to determine snowfall over land by microwave radiometry. IEEE Trans. Geosci. Remote Sens., 42, 10471058, https://doi.org/10.1109/TGRS.2004.825585.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., B. T. Johnson, and S. J. Munchak, 2013: Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE Trans. Geosci. Remote Sens., 51, 41774189, https://doi.org/10.1109/TGRS.2012.2227763.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., M. Kulie, L. Milani, S. J. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Search Google Scholar
    • Export Citation
  • Song, Y., A. Behrangi, and E. Blanchard-Wrigglesworth, 2020: Assessment of satellite and reanalysis cold season snowfall estimates over Arctic sea ice. Geophys. Res. Lett., 47, e2020GL088970, https://doi.org/10.1029/2020GL088970.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and F. W. Chen, 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38, 23222332, https://doi.org/10.1109/36.868889.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, https://doi.org/10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Takbiri, Z., L. Milani, C. Guilloteau, and E. Foufoula-Georgiou, 2021: Quantitative investigation of radiometric interactions between snowfall, snow cover, and cloud liquid water over land. Remote Sens., 13, 2641, https://doi.org/10.3390/rs13132641.

    • Search Google Scholar
    • Export Citation
  • Tang, G., D. Long, A. Behrangi, C. Wang, and Y. Hong, 2018: Exploring deep neural networks to retrieve rain and snow in high latitudes using multisensor and reanalysis data. Water Resour. Res., 54, 82538278, https://doi.org/10.1029/2018WR023830.

    • Search Google Scholar
    • Export Citation
  • Tang, G., M. P. Clark, S. M. Papalexiou, Z. Ma, and Y. Hong, 2020: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Y. Tian, and X. Lin, 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 45464567, https://doi.org/10.1002/2013JD020933.

    • Search Google Scholar
    • Export Citation
  • Vahedizade, S., A. Ebtehaj, Y. You, S. E. Ringerud, and F. J. Turk, 2021: Passive microwave signatures and retrieval of high-latitude snowfall over open oceans and sea ice: Insights from coincidences of GPM and CloudSat satellites. IEEE Trans. Geosci. Remote Sens., 60, 113, https://doi.org/10.1109/TGRS.2021.3071709.

    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, D. A. Marks, W. Petersen, A.-M. Harri, and V. Chandrasekar, 2018: Validation of GMI snowfall observations by using a combination of weather radar and surface measurements. J. Appl. Meteor. Climatol., 57, 797820, https://doi.org/10.1175/JAMC-D-17-0176.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. Liu, E.-K. Seo, and Y. Fu, 2013: Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos. Res., 131, 6072, https://doi.org/10.1016/j.atmosres.2012.06.008.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., A. Behrangi, B. Lambrigtsen, and P.-E. Kirstetter, 2016: Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens., 8, 904, https://doi.org/10.3390/rs8110904.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Search Google Scholar
    • Export Citation
  • Xie, X., U. Löhnert, S. Kneifel, and S. Crewell, 2012: Snow particle orientation observed by ground-based microwave radiometry. J. Geophys. Res., 117, D02206, https://doi.org/10.1029/2011JD016369.

    • Search Google Scholar
    • Export Citation
  • Yang, J. X., D. S. McKague, and C. S. Ruf, 2016: Uncertainties in radiometer intercalibration associated with variability in geophysical parameters. J. Geophys. Res. Atmos., 121, 11 34811 367, https://doi.org/10.1002/2016JD024937.

    • Search Google Scholar
    • Export Citation
  • You, Y., and G. Liu, 2012: The relationship between surface rainrate and water paths and its implications to satellite rainrate retrieval. J. Geophys. Res., 117, D13207, https://doi.org/10.1029/2012JD017662.

    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, and R. Ferraro, 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, https://doi.org/10.1002/2014JD022534.

    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and P. Meyers, 2016: A prototype precipitation retrieval algorithm over land for ATMS. J. Hydrometeor., 17, 16011621, https://doi.org/10.1175/JHM-D-15-0163.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., V. Petkovic, J. Tan, R. Kroodsma, W. Berg, C. Kidd, and C. Peters-Lidard, 2020: Evaluation of V05 precipitation estimates from GPM constellation radiometers using KuPR as the reference. J. Hydrometeor., 21, 705728, https://doi.org/10.1175/JHM-D-19-0144.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, S. Ringerud, and J. M. Haynes, 2021: Evaluation of rainfall-snowfall separation performance in remote sensing datasets. Geophys. Res. Lett., 48, e2021GL094180, https://doi.org/10.1029/2021GL094180.

    • Search Google Scholar
    • Export Citation
  • You, Y., H. Meng, J. Dong, Y. Fan, R. R. Ferraro, G. Gu, and L. Wang, 2022: A snowfall detection algorithm for ATMS over ocean, sea ice, and coast. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15, 14111420, https://doi.org/10.1109/JSTARS.2022.3140768.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 522 472 22
Full Text Views 217 204 5
PDF Downloads 220 213 6