Extreme Convective Rainfall and Flooding from Winter Season Extratropical Cyclones in the Mid-Atlantic Region of the United States

Yibing Su aDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Yibing Su in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2229-4751
,
James A. Smith aDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
, and
Gabriele Villarini bIIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme rainfall from extratropical cyclones and the distinctive hydrology of the winter season both contribute to flood extremes in the Mid-Atlantic region. In this study, we examine extreme rainfall and flooding from a winter season extratropical cyclone that passed through the eastern United States on 24/25 February 2016. Extreme rainfall rates during the 24/25 February 2016 time period were produced by supercell thunderstorms; we identify supercells through local maxima in azimuthal shear fields computed from Doppler velocity measurements from WSR-88D radars. Rainfall rates approaching 250 mm h−1 from a long-lived supercell in New Jersey were measured by a Parsivel disdrometer. A distinctive element of the storm environment for the 24/25 February 2016 storm was elevated values of convective available potential energy (CAPE). We also examine the climatology of atmospheric rivers (ARs)—like the February 2016 storm—based on an identification and tracking algorithm that uses Twentieth Century Reanalysis fields for the 66-yr period from 1950 to 2015. Climatological analyses suggest that AR frequency is increasing over the Mid-Atlantic region. An increase in AR frequency, combined with increasing frequency of elevated CAPE during the winter season over the Mid-Atlantic region, could result in striking changes to the climatology of extreme floods.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yibing Su, yibings@princeton.edu

Abstract

Extreme rainfall from extratropical cyclones and the distinctive hydrology of the winter season both contribute to flood extremes in the Mid-Atlantic region. In this study, we examine extreme rainfall and flooding from a winter season extratropical cyclone that passed through the eastern United States on 24/25 February 2016. Extreme rainfall rates during the 24/25 February 2016 time period were produced by supercell thunderstorms; we identify supercells through local maxima in azimuthal shear fields computed from Doppler velocity measurements from WSR-88D radars. Rainfall rates approaching 250 mm h−1 from a long-lived supercell in New Jersey were measured by a Parsivel disdrometer. A distinctive element of the storm environment for the 24/25 February 2016 storm was elevated values of convective available potential energy (CAPE). We also examine the climatology of atmospheric rivers (ARs)—like the February 2016 storm—based on an identification and tracking algorithm that uses Twentieth Century Reanalysis fields for the 66-yr period from 1950 to 2015. Climatological analyses suggest that AR frequency is increasing over the Mid-Atlantic region. An increase in AR frequency, combined with increasing frequency of elevated CAPE during the winter season over the Mid-Atlantic region, could result in striking changes to the climatology of extreme floods.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yibing Su, yibings@princeton.edu
Save
  • American Meteorological Society, 2022: Atmospheric river. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Atmospheric_river.

  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, https://doi.org/10.1175/2007MWR2308.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and R. J. Kuligowski, 1998: Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Mon. Wea. Rev., 126, 26482672, https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629, https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaney, M. M., J. A. Smith, and M. L. Baeck, 2022: Range dependence of polarimetric radar estimates for extreme flood-producing rainfall in urban watersheds. J. Hydrometeor., 23, 12051226, https://doi.org/10.1175/JHM-D-21-0191.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cristiano, E., M.-C. ten Veldhuis, and N. Van De Giesen, 2017: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas–A review. Hydrol. Earth Syst. Sci., 21, 38593878, https://doi.org/10.5194/hess-21-3859-2017.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., 2021: Environmental evolution of long-lived supercell thunderstorms in the Great Plains. Wea. Forecasting, 36, 21872209, https://doi.org/10.1175/WAF-D-21-0042.1.

    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., J. K. Roundy, S. Wi, and R. N. Palmer, 2016: The effects of climate change on seasonal snowpack and the hydrology of the northeastern and upper midwest United States. J. Climate, 29, 65276541, https://doi.org/10.1175/JCLI-D-15-0632.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Coauthors, 2021: Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philos. Trans. Roy. Soc., A379, 20190542, https://doi.org/10.1098/rsta.2019.0542.

    • Search Google Scholar
    • Export Citation
  • Frugis, B. J., 2020: The use of collapsing specific differential phase columns to predict significant severe thunderstorm wind damage across the northeastern United States. Eastern Region Tech. Attachment 2020-04, NOAA National Weather Service, 16 pp., https://www.weather.gov/media/erh/ta2020-04.pdf.

  • Fulton, R., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghebreyesus, D. T., and H. O. Sharif, 2021: Development and assessment of high-resolution radar-based precipitation intensity-duration-curve (IDF) curves for the state of Texas. Remote Sens., 13, 2890, https://doi.org/10.3390/rs13152890.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Grote, T., 2021: A synoptic climatology of rain-on-snow flooding in Mid-Atlantic region using NCEP/NCAR re-analysis. Phys. Geogr., 42, 452471, https://doi.org/10.1080/02723646.2020.1838119.

    • Search Google Scholar
    • Export Citation
  • Grover, N. C., 1937: The floods of 1936; Part 3: Potomac, James and upper Ohio Rivers. USGS Water Supply Paper 800, 381 pp., https://pubs.usgs.gov/wsp/0800/report.pdf.

  • Grumm, R. H., J. Ross, and P. Knight, 2005: Examining severe weather events using reanalysis datasets. 21st Conf. on Weather Analysis and Forecasting, Washington, DC, Amer. Meteor. Soc., P1.87, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94351.htm.

  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM radar toolkit (Py-ART), a Library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., and R. M. Hirsch, 1993: Statistical Methods in Water Resources. 1st ed. Elsevier, 522 pp.

  • Henn, B., K. N. Musselman, L. Lestak, F. M. Ralph, and N. P. Molotch, 2020: Extreme runoff generation from atmospheric river driven snowmelt during the 2017 Oroville Dam spillways incident. Geophys. Res. Lett., 47, e2020GL088189, https://doi.org/10.1029/2020GL088189.

    • Search Google Scholar
    • Export Citation
  • Huang, X., D. L. Swain, D. B. Walton, S. Stevenson, and A. D. Hall, 2020: Simulating and evaluating atmospheric river-induced precipitation extremes along the US Pacific Coast: Case studies from 1980–2017. J. Geophys. Res. Atmos., 125, e2019JD031554, https://doi.org/10.1029/2019JD031554.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization radar. J. Oper. Meteor., 1, 226274, http://dx.doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., B. R. Bowers, J. T. Carlin, T. J. Schuur, J. W. Brogden, R. Toomey, and A. Dean, 2021: Using KDP cores as a downburst precursor signature. Wea. Forecasting, 36, 11831198, https://doi.org/10.1175/WAF-D-21-0005.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, https://doi.org/10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Lora, J. M., C. A. Shields, and J. J. Rutz, 2020: Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophys. Res. Lett., 47, e2020GL089302, https://doi.org/10.1029/2020GL089302.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. Vol. 2, John Wiley and Sons, 432 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., 1990: Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surf. Processes Landforms, 15, 119134, https://doi.org/10.1002/esp.3290150203.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., C. A. Doswell III, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18, 357370, https://doi.org/10.1175/1520-0434(2003)018<0357:SPTFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 11441166, https://doi.org/10.1002/2016WR019033.

    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, and Y. Zhu, 1992: Tropospheric rivers? A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci., 75, 29833009, https://doi.org/10.1175/JAS-D-17-0385.1.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020a: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” flood. Mon. Wea. Rev., 148, 83109, https://doi.org/10.1175/MWR-D-19-0206.1.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020b: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159182, https://doi.org/10.1175/MWR-D-19-0146.1.

    • Search Google Scholar
    • Export Citation
  • Oakley, N. S., J. T. Lancaster, M. L. Kaplan, and F. M. Ralph, 2017: Synoptic conditions associated with cool season post-fire debris flows in the transverse ranges of Southern California. Nat. Hazards, 88, 327354, https://doi.org/10.1007/s11069-017-2867-6.

    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Search Google Scholar
    • Export Citation
  • Pohlert, T., 2018: Non-parametric trend tests and change-point detection. R package version 1.1.1, 18 pp., https://CRAN.R-project.org/package=trend.

  • Ralph, F. M., and Coauthors, 2019: A scale to characterize the strength and impact of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. D. Dettinger, J. J. Rutz, and D. E. Waliser, 2020: Atmospheric Rivers. 1st ed. Springer, 252 pp.

  • Reimel, K. J., and M. Kumjian, 2021: Evaluation of KDP estimation algorithm performance in rain using a known-truth framework. J. Atmos. Oceanic Technol., 38, 587605, https://doi.org/10.1175/JTECH-D-20-0060.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2004: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. Wea. Forecasting, 19, 301309, https://doi.org/10.1175/1520-0434(2004)019<0301:AYCRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, P. Bukovčić, J. Zhang, and S. Cocks, 2022: Polarimetric radar quantitative precipitation estimation. Remote Sens., 14, 1695, https://doi.org/10.3390/rs14071695.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and K. L. Rasmussen, 2020: The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ., 1, 300314, https://doi.org/10.1038/s43017-020-0057-7.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Search Google Scholar
    • Export Citation
  • Slinskey, E. A., P. C. Loikith, D. E. Waliser, B. Guan, and A. Martin, 2020: A climatology of atmospheric rivers and associated precipitation for the seven U.S. national climate assessment regions. J. Hydrometeor., 21, 24392456, https://doi.org/10.1175/JHM-D-20-0039.1.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., E. Hui, M. Steiner, M. L. Baeck, W. F. Krajewski, and A. A. Ntelekos, 2009: Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour. Res., 45, W04430, https://doi.org/10.1029/2008WR006840.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, A. A. Ntelekos, G. Villarini, and M. Steiner, 2011a: Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resour. Res., 47, W04514, https://doi.org/10.1029/2010WR010190.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., G. Villarini, and M. L. Baeck, 2011b: Mixture distributions and the climatology of extreme rainfall and flooding in the eastern US. J. Hydrometeor., 12, 294309, https://doi.org/10.1175/2010JHM1242.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Back, L. Yang, J. Signell, E. Morin, and D. C. Goodrich, 2019: The paroxysmal precipitation of the desert: Flash floods in the southwestern United States. Water Resour. Res., 55, 10 21810 247, https://doi.org/10.1029/2019WR025480.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., G. J. Zhang, V. Ramanathan, and L. R. Leung, 2022: Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA, 119, e2117832119, https://doi.org/10.1073/pnas.2117832119.

    • Search Google Scholar
    • Export Citation
  • Su, Y., and J. A. Smith, 2021: An atmospheric water balance perspective on extreme rainfall potential for the contiguous US. Water Resour. Res., 57, e2020WR028387, https://doi.org/10.1029/2020WR028387.

    • Search Google Scholar
    • Export Citation
  • Su, Y., J. A. Smith, and G. Villarini, 2023: The hydrometeorology of extreme floods in the lower Mississippi River. J. Hydrometeor., 24, 203219, https://doi.org/10.1175/JHM-D-22-0024.1.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2021: Polarimetric radar characteristics of tornadogenesis failure in supercell thunderstorms. Atmosphere, 12, 581, https://doi.org/10.3390/atmos12050581.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, https://doi.org/10.1175/JAMC-D-15-0077.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. B., and M. S. Van Den Broeke, 2021: An automated Python algorithm to quantify ZDR arc and KDP– ZDR separation signatures in supercells. J. Atmos. Oceanic Technol., 38, 371386, https://doi.org/10.1175/JTECH-D-20-0056.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. B., N. R. Humrich, and M. S. Van Den Broeke, 2020: The Supercell Polarimetric Observation Research Kit (SPORK): An automated, python-based algorithm for examining supercell dual-pol signatures. 10th Symp. on Advances in Modeling and Analysis Using Python, Boston, MA, Amer. Meteor. Soc., 2.5, https://ams.confex.com/ams/2020Annual/webprogram/Paper367028.html.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and C. Liu, 2021: Extreme convection vs. extreme rainfall: A global view. Curr. Climate Change Rep., 7, 121130, https://doi.org/10.1007/s40641-021-00176-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 605 284 9
Full Text Views 208 93 3
PDF Downloads 256 109 4