• Aemisegger, F., 2018: On the link between the North Atlantic storm track and precipitation deuterium excess in Reykjavik. Atmos. Sci. Lett., 19, e865, https://doi.org/10.1002/asl.865.

    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli, 2014: Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys., 14, 40294054, https://doi.org/10.5194/acp-14-4029-2014.

    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., J. K. Spiegel, S. Pfahl, H. Sodemann, W. Eugster, and H. Wernli, 2015: Isotope meteorology of cold front passages: A case study combining observations and modeling. Geophys. Res. Lett., 42, 56525660, https://doi.org/10.1002/2015GL063988.

    • Search Google Scholar
    • Export Citation
  • Araguás-Araguás, L., K. Froehlich, and K. Rozanski, 2000: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Processes, https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Bailey, A., J. Nusbaumer, and D. Noone, 2015: Precipitation efficiency derived from isotope ratios in water vapor distinguishes dynamical and microphysical influences on subtropical atmospheric constituents. J. Geophys. Res. Atmos., 120, 91199137, https://doi.org/10.1002/2015JD023403.

    • Search Google Scholar
    • Export Citation
  • Barras, V., and I. Simmonds, 2009: Observation and modeling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J. Geophys. Res., 114, D23308, https://doi.org/10.1029/2009JD012132.

    • Search Google Scholar
    • Export Citation
  • Beilman, D. W., C. Massa, J. E. Nichols, O. Elison Timm, R. Kallstrom, and S. Dunbar-Co, 2019: Dynamic Holocene vegetation and North Pacific hydroclimate recorded in a mountain peatland, Moloka‘i, Hawai‘i. Front. Earth Sci., 7, 188, https://doi.org/10.3389/feart.2019.00188.

    • Search Google Scholar
    • Export Citation
  • Booth, H., N. Lautze, D. Tachera, and D. Dores, 2021: Event-based stable isotope analysis of precipitation along a high resolution transect on the south face of O’ahu, Hawai‘i. Pac. Sci., 75, 421441, https://doi.org/10.2984/75.3.9.

    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., Z. Cai, R. P. Fiorella, and A. L. Putman, 2019: Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci., 47, 453479, https://doi.org/10.1146/annurev-earth-053018-060220.

    • Search Google Scholar
    • Export Citation
  • Burns, S. J., A. Matter, N. Frank, and A. Mangini, 1998: Speleothem-based paleoclimate record from northern Oman. Geology, 26, 499502, https://doi.org/10.1130/0091-7613(1998)026<0499:SBPRFN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in the Hawaiian trade wind regime. J. Climate, 20, 11451160, https://doi.org/10.1175/JCLI4033.1.

    • Search Google Scholar
    • Export Citation
  • Carreira, P. M., J. M. Marques, A. Pina, A. Mota Gomes, P. A. Galego Fernandes, and F. Monteiro Santos, 2010: Groundwater assessment at Santiago Island (Cabo Verde): A multidisciplinary approach to a recurring source of water supply. Water Resour. Manage., 24, 11391159, https://doi.org/10.1007/s11269-009-9489-z.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, https://doi.org/10.1175/JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., K. M. Cobb, and D. Noone, 2016a: Manus water isotope investigation field campaign report. Tech. Rep. DOE/SC-ARM-15-079, 14 pp., https://www.osti.gov/biblio/1251149.

  • Conroy, J. L., D. Noone, K. M. Cobb, J. W. Moerman, and B. L. Konecky, 2016b: Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical pacific storms. J. Geophys. Res. Atmos., 121, 32903303, https://doi.org/10.1002/2015JD023844.

    • Search Google Scholar
    • Export Citation
  • Craig, H., 1961: Isotopic variations in meteoric waters. Science, 133, 17021703, https://doi.org/10.1126/science.133.3465.1702.

  • Dahinden, F., and Coauthors, 2021: Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling. Atmos. Chem. Phys., 21, 16 31916 347, https://doi.org/10.5194/acp-21-16319-2021.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x.

  • Delmotte, M., V. Masson, J. Jouzel, and V. I. Morgan, 2000: A seasonal deuterium excess signal at law dome, coastal eastern Antarctica: A Southern Ocean signature. J. Geophys. Res., 105, 71877197, https://doi.org/10.1029/1999JD901085.

    • Search Google Scholar
    • Export Citation
  • Dores, D., C. R. Glenn, G. Torri, R. B. Whittier, and B. N. Popp, 2020: Implications for groundwater recharge from stable isotopic composition of precipitation in Hawai‘i during the 2017–2018 La Niña. Hydrol. Processes, 34, 46754696, https://doi.org/10.1002/hyp.13907.

    • Search Google Scholar
    • Export Citation
  • Draxler, R., and G. Hess, 1998: An overview of the hysplit4 modeling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Dütsch, M., S. Pfahl, and H. Wernli, 2016: Drivers of δ2H variations in an idealized extratropical cyclone. Geophys. Res. Lett., 43, 54015408, https://doi.org/10.1002/2016GL068600.

    • Search Google Scholar
    • Export Citation
  • Esquivel-Hernández, G., and Coauthors, 2019: Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrol. Processes, 33, 18021817, https://doi.org/10.1002/hyp.13438.

    • Search Google Scholar
    • Export Citation
  • Fackrell, J., and C. Glenn, 2014: How much do high-level aquifers impact SGD and the coastal zone in Hawai‘i? Unscrambling the mix with water isotopes. 2014 Ocean Sciences Meeting, Honolulu, HI, Amer. Geophys. Union, 1068.

  • Fackrell, J. K., C. R. Glenn, D. Thomas, R. Whittier, and B. N. Popp, 2020: Stable isotopes of precipitation and groundwater provide new insight into groundwater recharge and flow in a structurally complex hydrogeologic system: West Hawai‘i, USA. Hydrogeol. J., 28, 11911207, https://doi.org/10.1007/s10040-020-02143-9.

    • Search Google Scholar
    • Export Citation
  • Frappier, A., D. Sahagian, L. A. González, and S. J. Carpenter, 2002: El Niño events recorded by stalagmite carbon isotopes. Science, 298, 565, https://doi.org/10.1126/science.1076446.

    • Search Google Scholar
    • Export Citation
  • Frappier, A. B., D. Sahagian, S. J. Carpenter, L. A. González, and B. R. Frappier, 2007: Stalagmite stable isotope record of recent tropical cyclone events. Geology, 35, 111114, https://doi.org/10.1130/G23145A.1.

    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., O. Elison Timm, T. W. Giambelluca, and H. F. Diaz, 2018: The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai‘i. Climate Dyn., 51, 21272140, https://doi.org/10.1007/s00382-017-4003-4.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., and A. H. Woodcock, 1957: Determination of deuterium-hydrogen ratios in Hawaiian waters. Tellus, 9, 553556, https://doi.org/10.3402/tellusa.v9i4.9119.

    • Search Google Scholar
    • Export Citation
  • Froehlich, K., J. J. Gibson, and P. K. Aggarwal, 2002: Deuterium excess in precipitation and its climatological significance. Tech. Rep. IAEA-CSP–13/P, International Atomic Energy Agency, 13 pp., https://inis.iaea.org/search/search.aspx?orig_q=RN:34017972.

  • Galewsky, J., 2009: Rain shadow development during the growth of mountain ranges: An atmospheric dynamics perspective. J. Geophys. Res., 114, F01018, https://doi.org/10.1029/2008JF001085.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi, and M. Schneider, 2016: Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys., 54, 809865, https://doi.org/10.1002/2015RG000512.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and J. R. Lawrence, 1990: The isotopic composition of precipitation from two extratropical cyclones. Mon. Wea. Rev., 118, 495509, https://doi.org/10.1175/1520-0493(1990)118<0495:TICOPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Q. Chen, A. G. Frazier, J. P. Price, Y.-L. Chen, P.-S. Chu, J. K. Eischeid, and D. M. Delparte, 2013: Online rainfall atlas of Hawai‘i. Bull. Amer. Meteor. Soc., 94, 313316, https://doi.org/10.1175/BAMS-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T., and Coauthors, 2014: Evapotranspiration of Hawai‘i. Final Rep., 178 pp., http://evapotranspiration.geography.hawaii.edu/assets/files/PDF/ET%20Project%20Final%20Report.pdf.

  • Gingerich, S., and D. S. Oki, 2000: Ground water in Hawai‘i. U.S. Geological Survey, 6 pp., https://pubs.usgs.gov/fs/2000/126/pdf/fs126-00.pdf.

  • Goldberg, L. R., A. N. Kercheval, and K. Lee, 2005: t-statistics for weighted means in credit risk modeling. J. Risk Finance, 6, 349365, https://doi.org/10.1108/15265940510613688.

    • Search Google Scholar
    • Export Citation
  • González, Y., and Coauthors, 2016: Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements. Atmos. Chem. Phys., 16, 42514269, https://doi.org/10.5194/acp-16-4251-2016.

    • Search Google Scholar
    • Export Citation
  • Graf, P., H. Wernli, S. Pfahl, and H. Sodemann, 2019: A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. Atmos. Chem. Phys., 19, 747765, https://doi.org/10.5194/acp-19-747-2019.

    • Search Google Scholar
    • Export Citation
  • Gröning, M., H. O. Lutz, Z. Roller-Lutz, M. Kralik, L. Gourcy, and L. Pöltenstein, 2012: A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. J. Hydrol., 448449, 195200, https://doi.org/10.1016/j.jhydrol.2012.04.041.

    • Search Google Scholar
    • Export Citation
  • Guan, H., X. Zhang, G. Skrzypek, Z. Sun, and X. Xu, 2013: Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J. Geophys. Res. Atmos., 118, 11231138, https://doi.org/10.1002/jgrd.50137.

    • Search Google Scholar
    • Export Citation
  • Guilpart, E., F. Vimeux, S. Evan, J. Brioude, J.-M. Metzger, C. Barthe, C. Risi, and O. Cattani, 2017: The isotopic composition of near-surface water vapor at the Maïdo observatory (reunion island, southwestern Indian Ocean) documents the controls of the humidity of the subtropical troposphere. J. Geophys. Res. Atmos., 122, 96289650, https://doi.org/10.1002/2017JD026791.

    • Search Google Scholar
    • Export Citation
  • Gupta, P., D. Noone, J. Galewsky, C. Sweeney, and B. H. Vaughn, 2009: Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Spectrom., 23, 25342542, https://doi.org/10.1002/rcm.4100.

    • Search Google Scholar
    • Export Citation
  • Hartley, T. M., and Y.-L. Chen, 2010: Characteristics of summer trade wind rainfall over Oahu. Wea. Forecasting, 25, 17971815, https://doi.org/10.1175/2010WAF2222328.1.

    • Search Google Scholar
    • Export Citation
  • He, S., N. F. Goodkin, N. Kurita, X. Wang, and C. M. Rubin, 2018: Stable isotopes of precipitation during tropical sumatra squalls in Singapore. J. Geophys. Res. Atmos., 123, 38123829, https://doi.org/10.1002/2017JD027829.

    • Search Google Scholar
    • Export Citation
  • Heilweil, V. M., D. K. Solomon, S. B. Gingerich, and I. M. Verstraeten, 2009: Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol. J., 17, 11571174, https://doi.org/10.1007/s10040-009-0434-2.

    • Search Google Scholar
    • Export Citation
  • Herrera, C., and E. Custodio, 2008: Conceptual hydrogeological model of volcanic Easter Island (Chile) after chemical and isotopic surveys. Hydrogeol. J., 16, 13291348, https://doi.org/10.1007/s10040-008-0316-z.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye era-interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://doi.org/10.21957/vf291hehd7.

  • Hildenbrand, A., C. Marlin, A. Conroy, P.-Y. Gillot, A. Filly, and M. Massault, 2005: Isotopic approach of rainfall and groundwater circulation in the volcanic structure of Tahiti-Nui (French Polynesia). J. Hydrol., 302, 187208, https://doi.org/10.1016/j.jhydrol.2004.07.006.

    • Search Google Scholar
    • Export Citation
  • Horita, J., K. Rozanski, and S. Cohen, 2008: Isotope effects in the evaporation of water: A status report of the Craig–Gordon model. Isot. Environ. Health Stud., 44, 2349, https://doi.org/10.1080/10256010801887174.

    • Search Google Scholar
    • Export Citation
  • Hsiao, F., Y.-L. Chen, and D. E. Hitzl, 2020: Heavy rainfall events over central Oahu under weak wind conditions during seasonal transitions. Mon. Wea. Rev., 148, 41174141, https://doi.org/10.1175/MWR-D-19-0358.1.

    • Search Google Scholar
    • Export Citation
  • Hsiao, F., Y.-L. Chen, H. V. Nguyen, D. E. Hitzl, and R. Ballard, 2021: Effects of trade wind strength on airflow and cloudiness over Oahu. Mon. Wea. Rev., 149, 30373062, https://doi.org/10.1175/MWR-D-20-0399.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: NOAA extended reconstructed sea surface temperature (ERSST), version 5/. NOAA National Centers for Environmental Information, accessed 12 September 2021, https://doi.org/10.7289/V5T72FNM.

  • IAEA/WMO, 2021: Global network of isotopes in precipitation. The GNIP database. https://www.iaea.org/services/networks/gnip.

  • Johnsen, S. J., W. Dansgaard, and J. W. C. White, 1989: The origin of Arctic precipitation under present and glacial conditions. Tellus, 41B, 452468, https://doi.org/10.3402/tellusb.v41i4.15100.

    • Search Google Scholar
    • Export Citation
  • Kelly, J. L., and C. R. Glenn, 2015: Chlorofluorocarbon apparent ages of groundwaters from west Hawaii, USA. J. Hydrol., 527, 355366, https://doi.org/10.1016/j.jhydrol.2015.04.069.

    • Search Google Scholar
    • Export Citation
  • Kodama, K. R., and G. M. Barnes, 1997: Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367, https://doi.org/10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, K. R., and S. Businger, 1998: Weather and forecasting challenges in the Pacific region of the national weather service. Wea. Forecasting, 13, 523546, https://doi.org/10.1175/1520-0434(1998)013<0523:WAFCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kopec, B. G., X. Feng, E. S. Posmentier, and L. J. Sonder, 2019: Seasonal deuterium excess variations of precipitation at Summit, Greenland, and their climatological significance. J. Geophys. Res. Atmos., 124, 7291, https://doi.org/10.1029/2018JD028750.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., 2013: Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos., 118, 10 37610 390, https://doi.org/10.1002/jgrd.50754.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., K. Ichiyanagi, J. Matsumoto, M. D. Yamanaka, and T. Ohata, 2009: The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor., 102, 113122, https://doi.org/10.1016/j.gexplo.2009.03.002.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., and I. Fung, 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, https://doi.org/10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., I. Fung, D. J. DePaolo, and C. C. Henning, 2007: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res., 112, D16306, https://doi.org/10.1029/2006JD007657.

    • Search Google Scholar
    • Export Citation
  • Leroy-Dos Santos, C., and Coauthors, 2020: A 4.5 year-long record of Svalbard water vapor isotopic composition documents winter air mass origin. J. Geophys. Res. Atmos., 125, e2020JD032681, https://doi.org/10.1029/2020JD032681.

    • Search Google Scholar
    • Export Citation
  • Liu, W. J., Y. Ping Zhang, H. Mei Li, and Y. Hong Liu, 2005: Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China: A preliminary study. Water Res., 39, 787794, https://doi.org/10.1016/j.watres.2004.12.002.

    • Search Google Scholar
    • Export Citation
  • Longman, R. J., H. F. Diaz, and T. W. Giambelluca, 2015: Sustained increases in lower-tropospheric subsidence over the central tropical North Pacific drive a decline in high-elevation rainfall in Hawaii. J. Climate, 28, 87438759, https://doi.org/10.1175/JCLI-D-15-0006.1.

    • Search Google Scholar
    • Export Citation
  • Longman, R. J., O. E. Timm, T. W. Giambelluca, and L. Kaiser, 2021: A 20-year analysis of disturbance-driven rainfall on O‘ahu, Hawai‘i. Mon. Wea. Rev., 149, 17671783, https://doi.org/10.1175/MWR-D-20-0287.1.

    • Search Google Scholar
    • Export Citation
  • Managave, S. R., R. A. Jani, T. Narayana Rao, K. Sunilkumar, S. Satheeshkumar, and R. Ramesh, 2016: Intra-event isotope and raindrop size data of tropical rain reveal effects concealed by event averaged data. Climate Dyn., 47, 981987, https://doi.org/10.1007/s00382-015-2884-7.

    • Search Google Scholar
    • Export Citation
  • Mandal, A. K., J. Zhang, and K. Asai, 2011: Stable isotopic and geochemical data for inferring sources of recharge and groundwater flow on the volcanic island of Rishiri, Japan. Appl. Geochem., 26, 17411751, https://doi.org/10.1016/j.apgeochem.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, N. J., J. L. Conroy, D. Noone, K. M. Cobb, B. L. Konecky, and S. Rea, 2018: Seasonal and ENSO influences on the stable isotopic composition of Galápagos precipitation. J. Geophys. Res. Atmos., 123, 261275, https://doi.org/10.1002/2017JD027380.

    • Search Google Scholar
    • Export Citation
  • Massa, C., D. W. Beilman, J. E. Nichols, and O. E. Timm, 2021: Central Pacific hydroclimate over the last 45,000 years: Molecular-isotopic evidence from leaf wax in a Hawai‘i peatland. Quat. Sci. Rev., 253, 106744, https://doi.org/10.1016/j.quascirev.2020.106744.

    • Search Google Scholar
    • Export Citation
  • McMurtry, G. M., P.-F. Fan, and T. B. Coplen, 1977: Chemical and isotopic investigations of groundwater in potential geothermal areas in Hawaii. Amer. J. Sci., 277, 438458, https://doi.org/10.2475/ajs.277.4.438.

    • Search Google Scholar
    • Export Citation
  • Mercer, J. J., D. T. Liefert, and D. G. Williams, 2020: Atmospheric vapour and precipitation are not in isotopic equilibrium in a continental mountain environment. Hydrol. Processes, 34, 30783101, https://doi.org/10.1002/hyp.13775.

    • Search Google Scholar
    • Export Citation
  • Merlivat, L., and J. Jouzel, 1979: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res., 84, 50295033, https://doi.org/10.1029/JC084iC08p05029.

    • Search Google Scholar
    • Export Citation
  • Moerman, J. W., K. M. Cobb, J. F. Adkins, H. Sodemann, B. Clark, and A. A. Tuen, 2013: Diurnal to interannual rainfall δ18O variations in Northern Borneo driven by regional hydrology. Earth Planet. Sci. Lett., 369370, 108119, https://doi.org/10.1016/j.epsl.2013.03.014.

    • Search Google Scholar
    • Export Citation
  • Moore, M., Z. Kuang, and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, https://doi.org/10.1002/2013GL058302.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749754, https://doi.org/10.1038/nclimate1890.

    • Search Google Scholar
    • Export Citation
  • Otte, I., F. Detsch, A. Gütlein, M. Scholl, R. Kiese, T. Appelhans, and T. Nauss, 2017: Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania. Hydrol. Processes, 31, 39323947, https://doi.org/10.1002/hyp.11311.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., F. Aemisegger, and H. Wernli, 2021: Sources and transport pathways of precipitating waters in cold-season deep North Atlantic cyclones. J. Atmos. Sci., 78, 33493368, https://doi.org/10.1175/JAS-D-21-0105.1.

    • Search Google Scholar
    • Export Citation
  • Permana, D. S., L. G. Thompson, and G. Setyadi, 2016: Tropical west pacific moisture dynamics and climate controls on rainfall isotopic ratios in southern Papua, Indonesia. J. Geophys. Res. Atmos., 121, 22222245, https://doi.org/10.1002/2015JD023893.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Sodemann, 2014: What controls deuterium excess in global precipitation? Climate Past, 10, 771781, https://doi.org/10.5194/cp-10-771-2014.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., H. Wernli, and K. Yoshimura, 2012: The isotopic composition of precipitation from a winter storm–A case study with the limited-area model cosmoiso. Atmos. Chem. Phys., 12, 16291648, https://doi.org/10.5194/acp-12-1629-2012.

    • Search Google Scholar
    • Export Citation
  • Prada, S., J. V. Cruz, and C. Figueira, 2016: Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. J. Hydrol., 536, 409425, https://doi.org/10.1016/j.jhydrol.2016.03.009.

    • Search Google Scholar
    • Export Citation
  • Putman, A. L., R. P. Fiorella, G. J. Bowen, and Z. Cai, 2019: A global perspective on local meteoric water lines: Meta-analytic insight into fundamental controls and practical constraints. Water Resour. Res., 55, 68966910, https://doi.org/10.1029/2019WR025181.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhodes, A. L., A. J. Guswa, and S. E. Newell, 2006: Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica. Water Resour. Res., 42, W11402, https://doi.org/10.1029/2005WR004535.

    • Search Google Scholar
    • Export Citation
  • Ricker, W. E., 1973: Linear regressions in fishery research. J. Fish. Res. Board Canada, 30, 409434, https://doi.org/10.1139/f73-072.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, and F. Vimeux, 2008: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306. https://doi.org/10.1029/2008JD009943.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, F. Vimeux, M. Chong, and L. Descroix, 2010: Evolution of the stable water isotopic composition of the rain sampled along Sahelian Squall lines. Quart. J. Roy. Meteor. Soc., 136, 227242, https://doi.org/10.1002/qj.485.

    • Search Google Scholar
    • Export Citation
  • Risi, C., D. Noone, C. Frankenberg, and J. Worden, 2013: Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resour. Res., 49, 41364156, https://doi.org/10.1002/wrcr.20312.

    • Search Google Scholar
    • Export Citation
  • Rozanski, K., L. Araguás-Araguás, and R. Gonfiantini, 1993: Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, Geophys. Monogr., Vol. 78, Amer. Geophys. Union, 1–36, https://doi.org/10.1029/GM078p0001.

  • Sachs, J. P., D. Sachse, R. H. Smittenberg, Z. Zhang, D. S. Battisti, and S. Golubic, 2009: Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat. Geosci., 2, 519525, https://doi.org/10.1038/ngeo554.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Murillo, R., A. M. Durán-Quesada, C. Birkel, G. Esquivel-Hernández, and J. Boll, 2017: Tropical precipitation anomalies and d-excess evolution during El Niño 2014–16. Hydrol. Processes, 31, 956967, https://doi.org/10.1002/hyp.11088.

    • Search Google Scholar
    • Export Citation
  • Schmitt, S. R., D. A. Riveros-Iregui, and J. Hu, 2018: The role of fog, orography, and seasonality on precipitation in a semiarid, tropical island. Hydrol. Processes, 32, 27922805, https://doi.org/10.1002/hyp.13228.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., and S. F. Murphy, 2014: Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico. Water Resour. Res., 50, 43054322, https://doi.org/10.1002/2013WR014413.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., S. E. Ingebritsen, C. J. Janik, and J. P. Kauahikaua, 1996: Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii. Water Resour. Res., 32, 35253537, https://doi.org/10.1029/95WR02837.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., S. B. Gingerich, and G. W. Tribble, 2002: The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. J. Hydrol., 264, 170184, https://doi.org/10.1016/S0022-1694(02)00073-2.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., T. W. Giambelluca, S. B. Gingerich, M. A. Nullet, and L. L. Loope, 2007: Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water. Water Resour. Res., 43, W12411, https://doi.org/10.1029/2007WR006011.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., J. B. Shanley, J. P. Zegarra, and T. B. Coplen, 2009: The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Water Resour. Res., 45, W12407, https://doi.org/10.1029/2008WR007515.

    • Search Google Scholar
    • Export Citation
  • Shuler, C. K., H. Dulai, R. DeWees, M. Kirs, C. R. Glenn, and A. I. El-Kadi, 2019: Isotopes, microbes, and turbidity: A multi-tracer approach to understanding recharge dynamics and groundwater contamination in a basaltic island aquifer. Ground Water Monit. Rem., 39, 2035, https://doi.org/10.1111/gwmr.12299.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1952: Evolution of the Kona storm a subtropical cyclone. J. Atmos. Sci., 9, 2435, https://doi.org/10.1175/1520-0469(1952)009<0024:EOTKSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, https://doi.org/10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2019: 100 years of progress on mountain meteorology research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.

  • Smith, R. B., and J. P. Evans, 2007: Orographic precipitation and water vapor fractionation over the Southern Andes. J. Hydrometeor., 8, 319, https://doi.org/10.1175/JHM555.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica experiment. Bull. Amer. Meteor. Soc., 93, 15671579, https://doi.org/10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., V. Masson-Delmotte, C. Schwierz, B. M. Vinther, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic oscillation variability on stable isotopes in precipitation. J. Geophys. Res., 113, D12111, https://doi.org/10.1029/2007JD009416.

    • Search Google Scholar
    • Export Citation
  • State of Hawaii, 2004: 2004 State of Hawaii Data Book. Dept. of Business, Economic Development and Tourism, 44 pp., https://files.hawaii.gov/dbedt/economic/databook/db2004/tableindex.pdf.

  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., 1975: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res., 80, 11331146, https://doi.org/10.1029/JC080i009p01133.

    • Search Google Scholar
    • Export Citation
  • Tachera, D. K., N. C. Lautze, G. Torri, and D. M. Thomas, 2021: Characterization of the isotopic composition and bulk ion deposition of precipitation from central to west Hawai‘i island between 2017 and 2019. J. Hydrol., 34, 100786, https://doi.org/10.1016/j.ejrh.2021.100786.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., D. W. Oppo, Y. Rosenthal, J. M. Russell, and B. K. Linsley, 2010: Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanogr. Paleoclimatol., 25, PA1102, https://doi.org/10.1029/2009PA001871.

    • Search Google Scholar
    • Export Citation
  • Tillman, F. D., D. S. Oki, A. G. Johnson, L. B. Barber, and K. R. Beisner, 2014: Investigation of geochemical indicators to evaluate the connection between inland and coastal groundwater systems near Kaloko-Honokōhau National Historical Park, Hawai’i. Appl. Geochem., 51, 278292, https://doi.org/10.1016/j.apgeochem.2014.10.003.

    • Search Google Scholar
    • Export Citation
  • Torri, G., D. Ma, and Z. Kuang, 2017: Stable water isotopes and large-scale vertical motions in the tropics. J. Geophys. Res. Atmos., 122, 37033717, https://doi.org/10.1002/2016JD026154.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trujillo-Ortiz, A., 2022: gmregress, version 1.7.0.0. MathWorks, https://www.mathworks.com/matlabcentral/fileexchange/27918-gmregress.

  • Uemura, R., Y. Matsui, K. Yoshimura, H. Motoyama, and N. Yoshida, 2008: Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res., 113, D19114, https://doi.org/10.1029/2008JD010209.

    • Search Google Scholar
    • Export Citation
  • Uemura, R., N. Yonezawa, K. Yoshimura, R. Asami, H. Kadena, K. Yamada, and N. Yoshida, 2012: Factors controlling isotopic composition of precipitation on Okinawa Island, Japan: Implications for paleoclimate reconstruction in the East Asian monsoon region. J. Hydrol., 475, 314322, https://doi.org/10.1016/j.jhydrol.2012.10.014.

    • Search Google Scholar
    • Export Citation
  • Uemura, R., M. Uemura, M. Sano, and T. Nakatsuka, 2018: A 180-year-long isotopic record of tree-ring cellulose on Okinawa Island, Japan. Geochem. J., 52, e21e27, https://doi.org/10.2343/geochemj.2.0543.

    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2020: Annual estimates of the resident population for the United States, regions, states, and the District of Columbia: April 1, 2010 to July 1, 2020, 2 pp., https://www.census.gov/programs-surveys/popest/technical-documentation/research/evaluation-estimates/2020-evaluation-estimates/2010s-state-total.html.

  • USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I. D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 470 pp., https://doi.org/10.7930/J0J964J6.

  • Veron, S., M. Mouchet, R. Govaerts, T. Haevermans, and R. Pellens, 2019: Vulnerability to climate change of islands worldwide and its impact on the tree of life. Sci. Rep., 9, 14471, https://doi.org/10.1038/s41598-019-51107-x.

    • Search Google Scholar
    • Export Citation
  • Villiger, L., H. Wernli, M. Boettcher, M. Hagen, and F. Aemisegger, 2022: Lagrangian formation pathways of moist anomalies in the trade-wind region during the dry season: Two case studies from EUREC4A. Wea. Climate Dyn., 3, 5988, https://doi.org/10.5194/wcd-3-59-2022.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., and C. Risi, 2021: Isotopic equilibrium between raindrops and water vapor during the onset and the termination of the 2005–2006 wet season in the Bolivian Andes. J. Hydrol., 598, 126472, https://doi.org/10.1016/j.jhydrol.2021.126472.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., R. Gallaire, S. Bony, G. Hoffmann, and J. C. Chiang, 2005: What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth Planet. Sci. Lett., 240, 205220, https://doi.org/10.1016/j.epsl.2005.09.031.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., P. Ginot, M. Schwikowski, M. Vuille, G. Hoffmann, L. G. Thompson, and U. Schotterer, 2009: Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 229241, https://doi.org/10.1016/j.palaeo.2008.03.054.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, https://doi.org/10.1126/science.1064618.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., A. Johannessen, and H. Sodemann, 2021: High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway. Wea. Climate Dyn., 2, 713737, https://doi.org/10.5194/wcd-2-713-2021.

    • Search Google Scholar
    • Export Citation
  • Windhorst, D., T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer, 2013: Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol. Earth Syst. Sci., 17, 409419, https://doi.org/10.5194/hess-17-409-2013.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., and K. Ichiyanagi, 2009: A reconsideration of seasonal variation in precipitation deuterium excess over East Asia. J. Japan Soc. Hydrol. Water Resour., 22, 262276.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., M. Kanamitsu, and M. Dettinger, 2010: Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res., 115, D18114, https://doi.org/10.1029/2010JD014032.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y.-L. Chen, T. A. Schroeder, and K. Kodama, 2005: Numerical simulations of sea-breeze circulations over northwest Hawaii. Wea. Forecasting, 20, 827846, https://doi.org/10.1175/WAF859.1.

    • Search Google Scholar
    • Export Citation
  • Zwart, C., N. C. Munksgaard, A. Protat, N. Kurita, D. Lambrinidis, and M. I. Bird, 2018: The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes, 32, 22962303, https://doi.org/10.1002/hyp.13140.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 252 252 43
Full Text Views 56 56 9
PDF Downloads 73 73 13

The Isotopic Composition of Rainfall on a Subtropical Mountainous Island

Giuseppe TorriaDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Giuseppe Torri in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8179-3035
,
Alison D. NugentaDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Alison D. Nugent in
Current site
Google Scholar
PubMed
Close
, and
Brian N. PoppbDepartment of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Brian N. Popp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ2H and δ18O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with a long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i.

Significance Statement

The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giuseppe Torri, gtorri@hawaii.edu

Abstract

Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ2H and δ18O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with a long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i.

Significance Statement

The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giuseppe Torri, gtorri@hawaii.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.94 MB)
Save