Cloud-Resolving Modeling and Evaluation of Microphysical Schemes for Flash Flood–Producing Convection over the Black Sea

Anatolii Anisimov aMarine Hydrophysical Institute, Russian Academy of Science, Sevastopol, Russia

Search for other papers by Anatolii Anisimov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5530-5608
,
Vladimir Efimov aMarine Hydrophysical Institute, Russian Academy of Science, Sevastopol, Russia

Search for other papers by Vladimir Efimov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4262-9902
,
Margarita Lvova bVoeikov Main Geophysical Observatory, Saint Petersburg, Russia

Search for other papers by Margarita Lvova in
Current site
Google Scholar
PubMed
Close
,
Suleiman Mostamandi cKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Suleiman Mostamandi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9878-9641
, and
Georgiy Stenchikov cKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Georgiy Stenchikov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9033-4925
Restricted access

Abstract

In the present study, the convective event over the Black Sea area in September 2018 is analyzed using the Weather Research and Forecasting (WRF) Model configured with a fully convective-resolving setup. We test the WRF sensitivity to the choice of sea surface temperature (SST) dataset and microphysics scheme. The simulation is verified using weather radar measurements and ground observations. Both the choice of the microphysical scheme and SST dataset have a significant impact on the dynamic properties of the maritime convective system and associated rainfall. The best results are achieved with the WDM6 microphysical scheme and a more detailed and slightly warmer (compared to the default OSTIA SST) G1SST dataset. The optimally configured WRF simulations add value to coarser driving operational analysis, with more accurate amount and pattern of rainfall and the earlier arrival of the convective system, which is in better agreement with radar and weather station measurements. The vertical structure of the reflectivity profiles in the WDM6 scheme that simulates 15%–20% larger rainwater loading compared to other schemes agrees best with the observed data. Other schemes reproduce excessive reflectivity above the freezing level. Enhanced rainfall estimates and faster convective system propagation in the G1SST WDM6 simulations are linked to stronger cold pools caused by enhanced evaporation due to the higher rainwater content and droplet number concentrations. Stronger cold pools result in the 15%–20% enhancement of latent and sensible heat fluxes, reflecting the strong sensitivity of ocean–atmosphere heat and moisture exchange to the choice of microphysics scheme and SST dataset.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anatolii Anisimov, anatolii.anisimov@mhi-ras.ru

Abstract

In the present study, the convective event over the Black Sea area in September 2018 is analyzed using the Weather Research and Forecasting (WRF) Model configured with a fully convective-resolving setup. We test the WRF sensitivity to the choice of sea surface temperature (SST) dataset and microphysics scheme. The simulation is verified using weather radar measurements and ground observations. Both the choice of the microphysical scheme and SST dataset have a significant impact on the dynamic properties of the maritime convective system and associated rainfall. The best results are achieved with the WDM6 microphysical scheme and a more detailed and slightly warmer (compared to the default OSTIA SST) G1SST dataset. The optimally configured WRF simulations add value to coarser driving operational analysis, with more accurate amount and pattern of rainfall and the earlier arrival of the convective system, which is in better agreement with radar and weather station measurements. The vertical structure of the reflectivity profiles in the WDM6 scheme that simulates 15%–20% larger rainwater loading compared to other schemes agrees best with the observed data. Other schemes reproduce excessive reflectivity above the freezing level. Enhanced rainfall estimates and faster convective system propagation in the G1SST WDM6 simulations are linked to stronger cold pools caused by enhanced evaporation due to the higher rainwater content and droplet number concentrations. Stronger cold pools result in the 15%–20% enhancement of latent and sensible heat fluxes, reflecting the strong sensitivity of ocean–atmosphere heat and moisture exchange to the choice of microphysics scheme and SST dataset.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anatolii Anisimov, anatolii.anisimov@mhi-ras.ru

Supplementary Materials

    • Supplemental Materials (ZIP 7.81 MB)
Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, https://doi.org/10.1175/MWR-D-12-00064.1.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Anisimov, A. E., V. V. Efimov, and M. V. Lvova, 2021: Evaluation of GPM IMERG products and estimation of warm-season precipitation in Crimea. Phys. Oceanogr., 28, 454467, https://doi.org/10.22449/1573-160X-2021-4-454-467.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., Z. Li, J. D. Farrara, and P. Hung, 2009: Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Oceanic Technol., 26, 14151426, https://doi.org/10.1175/2009JTECHO592.1.

    • Search Google Scholar
    • Export Citation
  • Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, https://doi.org/10.1002/met.1538.

    • Search Google Scholar
    • Export Citation
  • Deng, L., M. F. McCabe, G. Stenchikov, J. P. Evans, and P. A. Kucera, 2015: Simulation of flash-flood-producing storm events in Saudi Arabia using the weather research and forecasting model. J. Hydrometeor., 16, 615630, https://doi.org/10.1175/JHM-D-14-0126.1.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Duzenli, E., I. Yucel, H. Pilatin, and M. T. Yilmaz, 2021: Evaluating the performance of a WRF initial and physics ensemble over eastern Black Sea and Mediterranean regions in Turkey. Atmos. Res., 248, 105184, https://doi.org/10.1016/j.atmosres.2020.105184.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Search Google Scholar
    • Export Citation
  • Gao, W., C.-H. Sui, T.-C. C. Wang, and W.-Y. Chang, 2011: An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the Southwest Monsoon Experiment (SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment (TiMREX) observations. J. Geophys. Res., 116, D19101, https://doi.org/10.1029/2011JD015718.

    • Search Google Scholar
    • Export Citation
  • Gevorgyan, A., 2018: Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J. Geophys. Res. Atmos., 123, 11 00811 029, https://doi.org/10.1029/2017JD028247.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, https://doi.org/10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and F. Couvreux, 2017: A short review of numerical cloud-resolving models. Tellus, 69A, 1373578, https://doi.org/10.1080/16000870.2017.1373578.

    • Search Google Scholar
    • Export Citation
  • Guo, J., H. Lei, D. Chen, and J. Yang, 2019: Evaluation of the WDM6 scheme in the simulation of number concentrations and drop size distributions of warm-rain hydrometeors: Comparisons with the observations and other schemes. Atmos. Ocean. Sci. Lett., 12, 458466, https://doi.org/10.1080/16742834.2019.1670584.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, https://doi.org/10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D. H., W. E. McGovern, and R. F. Saffle, 1995: The WSR-88D severe weather potential algorithm. Wea. Forecasting, 10, 141159, https://doi.org/10.1175/1520-0434(1995)010<0141:TWSWPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lei, H., J. Guo, D. Chen, and J. Yang, 2020: Systematic bias in the prediction of warm-rain hydrometeors in the WDM6 microphysics scheme and modifications. J. Geophys. Res. Atmos., 125, e2019JD030756, https://doi.org/10.1029/2019JD030756.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Paxian, A., E. Hertig, S. Seubert, G. Vogt, J. Jacobeit, and H. Paeth, 2014: Present-day and future Mediterranean precipitation extremes assessed by different statistical approaches. Climate Dyn., 44, 845860, https://doi.org/10.1007/s00382-014-2428-6.

    • Search Google Scholar
    • Export Citation
  • Pieri, A. B., J. von Hardenberg, A. Parodi, and A. Provenzale, 2015: Sensitivity of precipitation statistics to resolution, microphysics, and convective parameterization: A case study with the high-resolution WRF climate model over Europe. J. Hydrometeor., 16, 18571872, https://doi.org/10.1175/JHM-D-14-0221.1.

    • Search Google Scholar
    • Export Citation
  • Pilatin, H., I. Yucel, E. Duzenli, and M. T. Yilmaz, 2021: Sensitivity of WRF-derived hydrometeorological extremes to sea surface temperatures in regions with complex topography and diverse climate. Atmos. Res., 264, 105816, https://doi.org/10.1016/j.atmosres.2021.105816.

    • Search Google Scholar
    • Export Citation
  • Planton, S., and Coauthors, 2012: The climate of the Mediterranean region in future climate projections. The Climate of the Mediterranean Region, P. Lionello, Ed., Elsevier, 449–502.

  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. Rasmussen, and G. Stephens, 2017: Challenges and advances in convection-permitting climate modeling. Bull. Amer. Meteor. Soc., 98, 10271030, https://doi.org/10.1175/BAMS-D-16-0263.1.

    • Search Google Scholar
    • Export Citation
  • Putsay, M., A. Simon, I. Szenyán, J. Kerkmann, and G. Horváth, 2011: Case study of the 20 May 2008 tornadic storm in Hungary – Remote sensing features and NWP simulation. Atmos. Res., 100, 657679, https://doi.org/10.1016/j.atmosres.2010.08.008.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the advanced research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Song, H.-J., and B.-J. Sohn, 2018: An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 54, 225236, https://doi.org/10.1007/s13143-018-0006-2.

    • Search Google Scholar
    • Export Citation
  • Sun, X., M. Xue, J. Brotzge, R. A. McPherson, X.-M. Hu, and X.-Q. Yang, 2016: An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J. Geophys. Res. Atmos., 121, 13 80113 825, https://doi.org/10.1002/2016JD024796.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2013: Precipitation intensity and variation during MC3E: A numerical modeling study. J. Geophys. Res. Atmos., 118, 71997218, https://doi.org/10.1002/jgrd.50410.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., Y.-L. Chen, S.-Y. Chen, Y.-H. Kuo, and P.-L. Lin, 2017: Impacts of including rain-evaporative cooling in the initial conditions on the prediction of a coastal heavy rainfall event during TiMREX. Mon. Wea. Rev., 145, 253277, https://doi.org/10.1175/MWR-D-16-0224.1.

    • Search Google Scholar
    • Export Citation
  • Tuel, A., and E. A. B. Eltahir, 2020: Why is the Mediterranean a climate change hot spot? J. Climate, 33, 58295843, https://doi.org/10.1175/JCLI-D-19-0910.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, https://doi.org/10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 616 616 9
Full Text Views 182 182 7
PDF Downloads 186 186 7