Future Increases in North American Extreme Precipitation in CMIP6 Downscaled with LOCA

David W. Pierce aDivision of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by David W. Pierce in
Current site
Google Scholar
PubMed
Close
,
Daniel R. Cayan aDivision of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Daniel R. Cayan in
Current site
Google Scholar
PubMed
Close
,
Daniel R. Feldman bEarth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Daniel R. Feldman in
Current site
Google Scholar
PubMed
Close
, and
Mark D. Risser bEarth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Mark D. Risser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new set of CMIP6 data downscaled using the localized constructed analogs (LOCA) statistical method has been produced, covering central Mexico through southern Canada at 6-km resolution. Output from 27 CMIP6 Earth system models is included, with up to 10 ensemble members per model and 3 SSPs (245, 370, and 585). Improvements from the previous CMIP5 downscaled data result in higher daily precipitation extremes, which have significant societal and economic implications. The improvements are accomplished by using a precipitation training dataset that better represents daily extremes and by implementing an ensemble bias correction that allows a more realistic representation of extreme high daily precipitation values in models with numerous ensemble members. Over southern Canada and the CONUS exclusive of Arizona (AZ) and New Mexico (NM), seasonal increases in daily precipitation extremes are largest in winter (∼25% in SSP370). Over Mexico, AZ, and NM, seasonal increases are largest in autumn (∼15%). Summer is the outlier season, with low model agreement except in New England and little changes in 5-yr return values, but substantial increases in the CONUS and Canada in the 500-yr return value. One-in-100-yr historical daily precipitation events become substantially more frequent in the future, as often as once in 30–40 years in the southeastern United States and Pacific Northwest by the end of the century under SSP 370. Impacts of the higher precipitation extremes in the LOCA version 2 downscaled CMIP6 product relative to the LOCA downscaled CMIP5 product, even for similar anthropogenic emissions, may need to be considered by end-users.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Pierce, dpierce@ucsd.edu

Abstract

A new set of CMIP6 data downscaled using the localized constructed analogs (LOCA) statistical method has been produced, covering central Mexico through southern Canada at 6-km resolution. Output from 27 CMIP6 Earth system models is included, with up to 10 ensemble members per model and 3 SSPs (245, 370, and 585). Improvements from the previous CMIP5 downscaled data result in higher daily precipitation extremes, which have significant societal and economic implications. The improvements are accomplished by using a precipitation training dataset that better represents daily extremes and by implementing an ensemble bias correction that allows a more realistic representation of extreme high daily precipitation values in models with numerous ensemble members. Over southern Canada and the CONUS exclusive of Arizona (AZ) and New Mexico (NM), seasonal increases in daily precipitation extremes are largest in winter (∼25% in SSP370). Over Mexico, AZ, and NM, seasonal increases are largest in autumn (∼15%). Summer is the outlier season, with low model agreement except in New England and little changes in 5-yr return values, but substantial increases in the CONUS and Canada in the 500-yr return value. One-in-100-yr historical daily precipitation events become substantially more frequent in the future, as often as once in 30–40 years in the southeastern United States and Pacific Northwest by the end of the century under SSP 370. Impacts of the higher precipitation extremes in the LOCA version 2 downscaled CMIP6 product relative to the LOCA downscaled CMIP5 product, even for similar anthropogenic emissions, may need to be considered by end-users.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Pierce, dpierce@ucsd.edu
Save
  • Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, https://doi.org/10.1002/joc.2312.

    • Search Google Scholar
    • Export Citation
  • Ahmed, K. F., G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah, 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. Northeast. Global Planet. Change, 100, 320332, https://doi.org/10.1016/j.gloplacha.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Akinsanola, A. A., G. J. Kooperman, A. G. Pendergrass, W. M. Hannah, and K. A. Reed, 2020: Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ. Res. Lett., 15, 094003, https://doi.org/10.1088/1748-9326/ab92c1.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., and S. N. Gosling, 2016: The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387401, https://doi.org/10.1007/s10584-014-1084-5.

    • Search Google Scholar
    • Export Citation
  • Avery, C. W., and Coauthors, 2018: Data tools and scenario products. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment Volume II, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 1413–1430, https://doi.org/10.7930/NCA4.2018.AP3.

  • Boé, J. L., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, https://doi.org/10.1002/joc.1602.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., C. M. Carrillo, D. J. Gochis, D. M. Hammerling, R. R. McCrary, and L. O. Mearns, 2015: Toward assessing NARCCAP regional climate model credibility for the North American monsoon: Future climate simulations. J. Climate, 28, 67076728, https://doi.org/10.1175/JCLI-D-14-00695.1.

    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2018: Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dyn., 50, 3149, https://doi.org/10.1007/s00382-017-3580-6.

    • Search Google Scholar
    • Export Citation
  • Chen, C. A., H.-H. Hsu, and H.-C. Liang, 2021: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the western North Pacific and East Asia. Wea. Climate Extremes, 31, 100303, https://doi.org/10.1016/j.wace.2021.100303.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2014: Assessing regression-based statistical approaches for downscaling precipitation over North America. Hydrol. Processes, 28, 34823504, https://doi.org/10.1002/hyp.9889.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, X. C. Zhang, H. Chen, S. L. Guo, and Y. Zhao, 2019: Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology. Climatic Change, 153, 361377, https://doi.org/10.1007/s10584-019-02393-x.

    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., and P. Coulibaly, 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, https://doi.org/10.1016/j.jhydrol.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • Dike, V. N., Z. H. Lin, K. Fei, G. S. Langendijk, and D. Nath, 2022: Evaluation and multimodel projection of seasonal precipitation extremes over Central Asia based on CMIP6 simulations. Int. J. Climatol., 42, 72287251, https://doi.org/10.1002/joc.7641.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Faye, A., and A. A. Akinsanola, 2022: Evaluation of extreme precipitation indices over West Africa in CMIP6 models. Climate Dyn., 58, 925939, https://doi.org/10.1007/s00382-021-05942-2.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Fritsch, F. N., and R. E. Carlson, 1980: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17, 238246, https://doi.org/10.1137/0717021.

    • Search Google Scholar
    • Export Citation
  • Ge, F., S. P. Zhu, H. L. Luo, X. F. Zhi, and H. Wang, 2021: Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett., 16, 024013, https://doi.org/10.1088/1748-9326/abd7ad.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Coauthors, 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations – A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, https://doi.org/10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Guo, Q., J. Chen, X. C. Zhang, M. X. Shen, H. Chen, and S. L. Guo, 2019: A new two-stage multivariate quantile mapping method for bias correcting climate model outputs. Climate Dyn., 53, 36033623, https://doi.org/10.1007/s00382-019-04729-w.

    • Search Google Scholar
    • Export Citation
  • Gupta, V., V. Singh, and M. K. Jain, 2020: Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. J. Hydrol., 590, 125422, https://doi.org/10.1016/j.jhydrol.2020.125422.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani, 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578, https://doi.org/10.1175/2011JHM1336.1.

    • Search Google Scholar
    • Export Citation
  • Harp, R. D., and D. E. Horton, 2022: Observed changes in daily precipitation intensity in the United States. Geophys. Res. Lett., 49, e2022GL099955, https://doi.org/10.1029/2022GL099955.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1990: L-moment: Analysis and estimation of distributions using linear-combinations of order-statistics. J. Roy. Stat. Soc., 52, 105124, https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2020: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. B. Zhang, J. Sillmann, and M. Sandstad, 2020: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Wea. Climate Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269.

    • Search Google Scholar
    • Export Citation
  • Kröner, N., S. Kotlarski, E. Fischer, D. Lüthi, E. Zubler, and C. Schär, 2017: Separating climate change signals into thermodynamic, lapse-rate and circulation effects: Theory and application to the European summer climate. Climate Dyn., 48, 34253440, https://doi.org/10.1007/s00382-016-3276-3.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., 2008: A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. J. Appl. Meteor. Climatol., 47, 32363251, https://doi.org/10.1175/2008JAMC1763.1.

    • Search Google Scholar
    • Export Citation
  • Li, F. Y., W. D. Collins, M. F. Wehner, D. L. Williamson, J. G. Olson, and C. Algieri, 2011: Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus, 63A, 884892, https://doi.org/10.1111/j.1600-0870.2011.00544.x.

    • Search Google Scholar
    • Export Citation
  • Li, H. B., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Search Google Scholar
    • Export Citation
  • Luo, N., Y. Guo, J. M. Chou, and Z. B. Gao, 2022: Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol., 42, 11481164, https://doi.org/10.1002/joc.7294.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, https://doi.org/10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2016: Bias correcting climate change simulations – A critical review. Curr. Climate Change Rep., 2, 211220, https://doi.org/10.1007/s40641-016-0050-x.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2017: Towards process-informed bias correction of climate change simulations. Nat. Climate Change, 7, 764773, https://doi.org/10.1038/nclimate3418.

    • Search Google Scholar
    • Export Citation
  • Martinkova, M., and J. Kysely, 2020: Overview of observed Clausius-Clapeyron scaling of extreme precipitation in midlatitudes. Atmosphere, 11, 786, https://doi.org/10.3390/atmos11080786.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and D. W. Pierce, 2014: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci., 18, 915925, https://doi.org/10.5194/hess-18-915-2014.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, https://doi.org/10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, https://doi.org/10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., A. Gershunov, A. Weyant, M. A. Fish, T. Shulgina, and F. M. Ralph, 2022: Atmospheric river precipitation enhanced by climate change: A case study of the storm that contributed to California’s Oroville Dam crisis. Earth’s Future, 10, e2021EF002537, https://doi.org/10.1029/2021EF002537.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, https://doi.org/10.1126/science.1151915.

    • Search Google Scholar
    • Export Citation
  • NCEI, 2022: U.S. Billion-dollar weather and climate disasters, 1980–present (NCEI Accession 0209268). Accessed 9 September 2022, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0209268.

  • Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble. J. Climate, 32, 10251045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    • Search Google Scholar
    • Export Citation
  • NRC, 1982: Scientific Basis of Water-Resource Management. National Academies Press, 130 pp., https://doi.org/10.17226/19530.

  • O’Brien, T. A., W. D. Collins, K. Kashinath, O. Rubel, S. Byna, J. M. Gu, H. Krishnan, and P. A. Ullrich, 2016: Resolution dependence of precipitation statistical fidelity in hindcast simulations. J. Adv. Model. Earth Syst., 8, 976990, https://doi.org/10.1002/2016MS000671.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2014: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, https://doi.org/10.1007/s10584-013-0905-2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • Ozturk, T., D. Matte, and J. H. Christensen, 2022: Robustness of future atmospheric circulation changes over the EURO-CORDEX domain. Climate Dyn., 59, 17991814, https://doi.org/10.1007/s00382-021-06069-0.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Pierce, D. W., and D. R. Cayan, 2016: Downscaling humidity with localized constructed analogs (LOCA) over the conterminous United States. Climate Dyn., 47, 411431, https://doi.org/10.1007/s00382-015-2845-1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106, 84418446, https://doi.org/10.1073/pnas.0900094106.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013a: The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Climate, 26, 58795896, https://doi.org/10.1175/JCLI-D-12-00766.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013b: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, https://doi.org/10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, https://doi.org/10.1175/JHM-D-14-0236.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., J. F. Kalansky, and D. R. Cayan, 2018: Climate, drought, and sea level rise scenarios for California’s fourth climate change assessment. California Energy Commission Rep. CCCA4-CEC-2018-006, 78 pp., https://www.energy.ca.gov/sites/default/files/2019-11/Projections_CCCA4-CEC-2018-006_ADA.pdf.

  • Pierce, D. W., L. Su, D. R. Cayan, M. D. Risser, B. Livneh, and D. P. Lettenmaier, 2021: An extreme-preserving long-term gridded daily precipitation dataset for the conterminous United States. J. Hydrometeor., 22, 18831895, https://doi.org/10.1175/JHM-D-20-0212.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, J. Goodrich, T. Das, and A. Munevar, 2022: Evaluating global climate models for hydrological studies of the upper Colorado River Basin. J. Amer. Water Resour. Assoc., 58, 709734, https://doi.org/10.1111/1752-1688.12974.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for western U.S. extreme precipitation and flooding. J. Contemp. Water Res. Educ., 153, 1632, https://doi.org/10.1111/j.1936-704X.2014.03176.x.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Search Google Scholar
    • Export Citation
  • Risser, M. D., D. R. Feldman, M. F. Wehner, D. W. Pierce, and J. R. Arnold, 2021: Identifying and correcting biases in localized downscaling estimates of daily precipitation return values. Climatic Change, 169, 33, https://doi.org/10.1007/s10584-021-03265-z.

    • Search Google Scholar
    • Export Citation
  • Sachindra, D. A., K. Ahmed, M. M. Rashid, S. Shahid, and B. J. C. Perera, 2018: Statistical downscaling of precipitation using machine learning techniques. Atmos. Res., 212, 240258, https://doi.org/10.1016/j.atmosres.2018.05.022.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., T. J. Bracegirdle, and I. Simmonds, 2018: Polar climate change as manifest in atmospheric circulation. Curr. Climate Change Rep., 4, 383395, https://doi.org/10.1007/s40641-018-0111-4.

    • Search Google Scholar
    • Export Citation
  • Sharifi, E., B. Saghafian, and R. Steinacker, 2019: Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos., 124, 789805, https://doi.org/10.1029/2018JD028795.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A., R. Grotjahn, and P. A. Ullrich, 2020: Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Wea. Climate Extremes, 29, 100268, https://doi.org/10.1016/j.wace.2020.100268.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A. K., R. Grotjahn, P. A. Ullrich, and M. Sadegh, 2021: Pooling data improves multimodel IDF estimates over median-based IDF estimates: Analysis over the Susquehanna and Florida. J. Hydrometeor., 22, 971995, https://doi.org/10.1175/JHM-D-20-0180.1.

    • Search Google Scholar
    • Export Citation
  • Sturman, A., and H. Quenol, 2013: Changes in atmospheric circulation and temperature trends in major vineyard regions of New Zealand. Int. J. Climatol., 33, 26092621, https://doi.org/10.1002/joc.3608.

    • Search Google Scholar
    • Export Citation
  • Tan, Y. H., F. Zwiers, S. Yang, C. Li, and K. Q. Deng, 2020: The role of circulation and its changes in present and future atmospheric rivers over western North America. J. Climate, 33, 12611281, https://doi.org/10.1175/JCLI-D-19-0134.1.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456457, 1229, https://doi.org/10.1016/j.jhydrol.2012.05.052.

    • Search Google Scholar
    • Export Citation
  • Thrasher, B., E. P. Maurer, C. McKellar, and P. B. Duffy, 2012: Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 33093314, https://doi.org/10.5194/hess-16-3309-2012.

    • Search Google Scholar
    • Export Citation
  • U.S. Bureau of Reclamation, 2013: Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. USBR Tech. Service Center, 47 pp., https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/LOCA_BCSD_hydrology_tech_memo.pdf.

  • Vaittinada Ayar, P., M. Vrac, and A. Mailhot, 2021: Ensemble bias correction of climate simulations: Preserving internal variability. Sci. Rep., 11, 3098, https://doi.org/10.1038/s41598-021-82715-1.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 1994: Searching for analogs, how long must we wait. Tellus, 46A, 314324, https://doi.org/10.1034/j.1600-0870.1994.t01-2-00006.x.

    • Search Google Scholar
    • Export Citation
  • Van Uytven, E., J. D. Niel, and P. Willems, 2020: Uncovering shortcomings of a weather typing method. Hydrol. Earth Syst. Sci., 24, 26712686, https://doi.org/10.5194/hess-24-2671-2020.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., M. D. Dettinger, R. Cifelli, D. Curtis, A. Dufour, K. Miller, J. R. Olsen, and A. M. Wilson, 2019: Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville Dam and Hurricane Harvey. Bull. Amer. Meteor. Soc., 100, S9S14, https://doi.org/10.1175/BAMS-D-18-0219.1.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., and Coauthors, 2020: Comparing downscaled LOCA and BCSD CMIP5 climate and hydrology projections. U.S. Bureau of Reclamation, 96 pp., https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/LOCA_BCSD_hydrology_tech_memo.pdf.

  • Wang, G., C. J. Kirchoff, A. Seth, J. T. Abatzoglou, B. Livneh, D. W. Pierce, L. Fomenko, and T. Ding, 2020: Projected changes of precipitation characteristics depend on downscaling method and training data: MACA versus LOCA using the U.S. Northeast as an example. J. Hydrometeor., 21, 27392758, https://doi.org/10.1175/JHM-D-19-0275.1.

    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Xu, H. W., H. P. Chen, and H. J. Wang, 2022: Future changes in precipitation extremes across China based on CMIP6 models. Int. J. Climatol., 42, 635651, https://doi.org/10.1002/joc.7264.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2021: Atmospheric circulation patterns conducive to severe haze in eastern China have shifted under climate change. Geophys. Res. Lett., 48, e2021GL095011, https://doi.org/10.1029/2021GL095011.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., 2019: Regional climate impacts of future changes in the mid-latitude atmospheric circulation: A storyline view. Curr. Climate Change Rep., 5, 358371, https://doi.org/10.1007/s40641-019-00146-7.

    • Search Google Scholar
    • Export Citation
  • Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 11191132, https://doi.org/10.1007/s00376-020-9289-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2637 2637 179
Full Text Views 341 341 41
PDF Downloads 460 460 39