Insights on Satellite-Based IMERG Precipitation Estimates at Multiple Space and Time Scales for a Developing Urban Region in India

Padmini Ponukumati aDepartment of Civil Engineering, Indian Institute of Technology, Hyderabad, India

Search for other papers by Padmini Ponukumati in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5270-6230
,
Azharuddin Mohammed aDepartment of Civil Engineering, Indian Institute of Technology, Hyderabad, India

Search for other papers by Azharuddin Mohammed in
Current site
Google Scholar
PubMed
Close
, and
Satish Regonda aDepartment of Civil Engineering, Indian Institute of Technology, Hyderabad, India
bDepartment of Climate Change, Indian Institute of Technology, Hyderabad, India

Search for other papers by Satish Regonda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-based rainfall estimates are a great resource for data-scarce regions, including urban regions, because of its finer resolution. Integrated Multi-satellitE Retrievals for GPM (IMERG) is a widely used product and is evaluated at a city scale for the Hyderabad region using two different ground truths, i.e., India Meteorological Department (IMD) gridded rainfall and Telangana State Development Planning Society (TSDPS) automatic weather station (AWS) measured rainfall. The IMERG rainfall estimates are evaluated on multiple spatial and temporal scales as well as on a rainfall event scale. Both continuous and categorical verification metrics suggest good performance of IMERG on the daily scale; however, relatively decreased performance was observed on the hourly scale. Underestimated and overestimated IMERG estimates with respect to IMD gridded rainfall and AWS measured rainfall, respectively, suggest the performance depends on type of ground truth. Unlike categorical metrics, RMSE and PBIAS have a pattern implying a systematic error with respect to rainfall amount. Further, sample size, diurnal variations, and season are found to have a role in IMERG estimates’ performance. Temporal aggregation of hourly to daily time scales showed the improved IMERG performance; however, no spatial-scale dependence was observed among zonewise and Hyderabad region–wise rainfall estimates. Comparison of raw and bias-corrected IMERG rainfall-based intensity–duration–frequency (IDF) curves with corresponding hourly rain gauge IDF curves showcases the value addition via simple bias correction techniques. Overall, the study suggests the IMERG estimates can be used as an alternative data source, and it can be further improved by modifying the retrieval algorithm.

Significance Statement

Many urban regions are typically data sparse, which limits scientific understanding and reliable engineering designs of various urban hydrometeorology-relevant tasks, including climatological and extreme rainfall characterization, flood hazard assessment, and stormwater management systems. Satellite rainfall estimates come as a great resource and Integrated Multi-satellitE Retrievals for GPM (IMERG) acts as a best alternative. The Hyderabad region, the sixth-largest metropolitan area in India, is selected to analyze the widely used satellite estimates, i.e., retrievals for GPM. The study observed inaccuracies in the IMERG estimates that varied with rainfall magnitudes and space and time scales; nonetheless, the estimates can be used as an alternative data source for decision-making such as whether rain exceeds a certain threshold or not.

This article is included in the Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Padmini Ponukumati, ce19resch11009@iith.ac.in

Abstract

Satellite-based rainfall estimates are a great resource for data-scarce regions, including urban regions, because of its finer resolution. Integrated Multi-satellitE Retrievals for GPM (IMERG) is a widely used product and is evaluated at a city scale for the Hyderabad region using two different ground truths, i.e., India Meteorological Department (IMD) gridded rainfall and Telangana State Development Planning Society (TSDPS) automatic weather station (AWS) measured rainfall. The IMERG rainfall estimates are evaluated on multiple spatial and temporal scales as well as on a rainfall event scale. Both continuous and categorical verification metrics suggest good performance of IMERG on the daily scale; however, relatively decreased performance was observed on the hourly scale. Underestimated and overestimated IMERG estimates with respect to IMD gridded rainfall and AWS measured rainfall, respectively, suggest the performance depends on type of ground truth. Unlike categorical metrics, RMSE and PBIAS have a pattern implying a systematic error with respect to rainfall amount. Further, sample size, diurnal variations, and season are found to have a role in IMERG estimates’ performance. Temporal aggregation of hourly to daily time scales showed the improved IMERG performance; however, no spatial-scale dependence was observed among zonewise and Hyderabad region–wise rainfall estimates. Comparison of raw and bias-corrected IMERG rainfall-based intensity–duration–frequency (IDF) curves with corresponding hourly rain gauge IDF curves showcases the value addition via simple bias correction techniques. Overall, the study suggests the IMERG estimates can be used as an alternative data source, and it can be further improved by modifying the retrieval algorithm.

Significance Statement

Many urban regions are typically data sparse, which limits scientific understanding and reliable engineering designs of various urban hydrometeorology-relevant tasks, including climatological and extreme rainfall characterization, flood hazard assessment, and stormwater management systems. Satellite rainfall estimates come as a great resource and Integrated Multi-satellitE Retrievals for GPM (IMERG) acts as a best alternative. The Hyderabad region, the sixth-largest metropolitan area in India, is selected to analyze the widely used satellite estimates, i.e., retrievals for GPM. The study observed inaccuracies in the IMERG estimates that varied with rainfall magnitudes and space and time scales; nonetheless, the estimates can be used as an alternative data source for decision-making such as whether rain exceeds a certain threshold or not.

This article is included in the Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Padmini Ponukumati, ce19resch11009@iith.ac.in

Supplementary Materials

    • Supplemental Materials (PDF 0.1474 MB)
Save
  • Agilan, V., and N. V. Umamahesh, 2017: Modelling nonlinear trend for developing non‐stationary rainfall intensity–duration–frequency curve. Int. J. Climatol., 37, 12651281, https://doi.org/10.1002/joc.4774.

    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., S. Razavi, H. S. Wheater, and J. S. Wong, 2017: Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeor., 18, 10331050, https://doi.org/10.1175/JHM-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Beria, H., T. Nanda, D. Singh Bisht, and C. Chatterjee, 2017: Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale. Hydrol. Earth Syst. Sci., 21, 61176134, https://doi.org/10.5194/hess-21-6117-2017.

    • Search Google Scholar
    • Export Citation
  • Chen, H., B. Yong, Y. Shen, J. Liu, Y. Hong, and J. Zhang, 2020: Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol., 581, 124376, https://doi.org/10.1016/j.jhydrol.2019.124376.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1953: Frequency Analysis of Hydrologic Data with Special Application to Rainfall Intensities. University of Illinois, 88 pp.

  • Deshpande, N. R., A. Kulkarni, and K. Krishna Kumar, 2012: Characteristic features of hourly rainfall in India. Int. J. Climatol., 32, 17301744, https://doi.org/10.1002/joc.2375.

    • Search Google Scholar
    • Export Citation
  • Dubey, S., H. Gupta, M. K. Goyal, and N. Joshi, 2021: Evaluation of precipitation datasets available on Google earth engine over India. Int. J. Climatol., 41, 48444863, https://doi.org/10.1002/joc.7102.

    • Search Google Scholar
    • Export Citation
  • Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit, 2015: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci., 19, 25472559, https://doi.org/10.5194/hess-19-2547-2015.

    • Search Google Scholar
    • Export Citation
  • Gadelha, A. N., and Coauthors, 2019: Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmos. Res., 218, 231244, https://doi.org/10.1016/j.atmosres.2018.12.001.

    • Search Google Scholar
    • Export Citation
  • Gaona, M. F. R., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2016: First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 Final Run (V03D). J. Hydrometeor., 17, 27992814, https://doi.org/10.1175/JHM-D-16-0087.1.

    • Search Google Scholar
    • Export Citation
  • Getirana, A., D. Kirschbaum, F. Mandarino, M. Ottoni, S. Khan, and K. Arsenault, 2020: Potential of GPM IMERG precipitation estimates to monitor natural disaster triggers in urban areas: The case of Rio de Janeiro, Brazil. Remote Sens., 12, 4095, https://doi.org/10.3390/rs12244095.

    • Search Google Scholar
    • Export Citation
  • Guptha, G. C., S. Swain, N. Al-Ansari, A. K. Taloor, and D. Dayal, 2021: Evaluation of an urban drainage system and its resilience using remote sensing and GIS. Remote Sens. Appl. Soc. Environ., 23, 100601, https://doi.org/10.1016/j.rsase.2021.100601.

    • Search Google Scholar
    • Export Citation
  • He, Z., L. Yang, F. Tian, G. Ni, A. Hou, and H. Lu, 2017: Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the upper Mekong River Basin. J. Hydrometeor., 18, 413430, https://doi.org/10.1175/JHM-D-16-0198.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor. Climatol., 43, 18341853, https://doi.org/10.1175/jam2173.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 2019: The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA Doc., 5 pp., https://gpm.nasa.gov/sites/default/files/document_files/TMPA-to-IMERG_transition_0.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Day 1 IMERG Final Run release notes. NASA Tech. Doc., 9 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, E. F. Stocker, and J. Tan, 2020: V06 IMERG release notes. NASA Tech. Doc., 15 pp., https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_V06_release_notes_201006_0.pdf.

  • Islam, M. A., 2018: Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh. Int. J. Remote Sens., 39, 29062936, https://doi.org/10.1080/01431161.2018.1433890.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke Sr., and J. M. Shepherd, 2010: Urbanization signature in the observed heavy rainfall climatology over India. Int. J. Climatol., 30, 19081916, https://doi.org/10.1002/joc.2044.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kyaw, A. K., S. Shahid, and X. Wang, 2022: Remote sensing for development of rainfall intensity–duration–frequency curves at ungauged locations of Yangon, Myanmar. Water, 14, 1699, https://doi.org/10.3390/w14111699.

    • Search Google Scholar
    • Export Citation
  • Li, N., G. Tang, P. Zhao, Y. Hong, Y. Gou, and K. Yang, 2017: Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res., 183, 212223, https://doi.org/10.1016/j.atmosres.2016.07.020.

    • Search Google Scholar
    • Export Citation
  • Li, Y., B. Pang, M. Ren, S. Shi, D. Peng, Z. Zhu, and D. Zuo, 2022: Evaluation of performance of three satellite-derived precipitation products in capturing extreme precipitation events over Beijing, China. Remote Sens., 14, 2698, https://doi.org/10.3390/rs14112698.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2021: Two-decades of GPM IMERG Early and Final Run products intercomparison: Similarity and difference in climatology, rates, and extremes. J. Hydrol., 594, 125975, https://doi.org/10.1016/j.jhydrol.2021.125975.

    • Search Google Scholar
    • Export Citation
  • Libertino, A., A. Sharma, V. Lakshmi, and P. Claps, 2016: A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environ. Res. Lett., 11, 054003, https://doi.org/10.1088/1748-9326/11/5/054003.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., G. Tang, D. Long, B. Yong, L. Zhong, W. Wan, and Y. Hong, 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM Multisatellite Precipitation Analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, https://doi.org/10.3390/rs8070569.

    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., and E. Y. M. Lo, 2020: Evaluation of GPM IMERG rainfall estimates in Singapore and assessing spatial sampling errors in ground reference. J. Hydrometeor., 21, 29632977, https://doi.org/10.1175/jhm-d-20-0135.1.

    • Search Google Scholar
    • Export Citation
  • Moazami, S., and M. R. Najafi, 2021: A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol., 594, 125929, https://doi.org/10.1016/j.jhydrol.2020.125929.

    • Search Google Scholar
    • Export Citation
  • Mohammed, A., S. K. Regonda, and N. R. Kopparthi, 2022: Climatological features of high temporal resolution rainfall over the Hyderabad city, India. Urban Climate, 42, 101118, https://doi.org/10.1016/j.uclim.2022.101118.

    • Search Google Scholar
    • Export Citation
  • Murali Krishna, U. V., S. K. Das, S. M. Deshpande, S. L. Doiphode, and G. Pandithurai, 2017: The assessment of Global Precipitation Measurement estimates over the Indian subcontinent. Earth Space Sci., 4, 540553, https://doi.org/10.1002/2017EA000285.

    • Search Google Scholar
    • Export Citation
  • Ning, S., J. Wang, J. Jin, and H. Ishidaira, 2016: Assessment of the latest GPM-era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese Mainland. Water, 8, 481, https://doi.org/10.3390/w8110481.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., M. Lei, C. Kishtawal, P. Schmid, and M. Shepherd, 2017: Urbanization impacts on the summer heavy rainfall climatology over the eastern United States. Earth Interact., 21, https://doi.org/10.1175/EI-D-15-0045.1.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., K. K. Osuri, N. K. R. Busireddy, and R. Nadimpalli, 2020: Timing of rainfall occurrence altered by urban sprawl. Urban Climate, 33, 100643, https://doi.org/10.1016/j.uclim.2020.100643.

    • Search Google Scholar
    • Export Citation
  • O, S., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Search Google Scholar
    • Export Citation
  • Omranian, E., and H. O. Sharif, 2018: Evaluation of the Global Precipitation Measurement (GPM) satellite rainfall products over the lower Colorado River basin, Texas. J. Amer. Water Resour. Assoc., 54, 882898, https://doi.org/10.1111/1752-1688.12610.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., M. Rajeevan, O. P. Sreejith, B. Mukhopadhyay, and N. S. Satbha, 2014: Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65 (1), 118, https://doi.org/10.54302/mausam.v65i1.851.

    • Search Google Scholar
    • Export Citation
  • Panda, J., and S. S. Rath, 2022: Observed and simulated characteristics of 2015 Chennai heavy rain event: Impact of land-use change, SST, and high-resolution global analyses. Pure Appl. Geophys., 179, 33913409, https://doi.org/10.1007/s00024-022-03113-w.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, A. AghaKouchak, Z. Liu, H. Norouzi, and D. S. Pai, 2018: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol., 556, 865876, https://doi.org/10.1016/j.jhydrol.2016.01.029.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., C. K. Unnikrishnan, J. Bhate, K. Niranjan Kumar, and P. P. Sreekala, 2012: Northeast monsoon over India: Variability and prediction. Met. Appl., 19, 226236, https://doi.org/10.1002/met.1322.

    • Search Google Scholar
    • Export Citation
  • Ramsauer, T., T. Weiß, and P. Marzahn, 2018: Comparison of the GPM IMERG final precipitation product to RADOLAN weather radar data over the topographically and climatically diverse Germany. Remote Sens., 10, 2029, https://doi.org/10.3390/rs10122029.

    • Search Google Scholar
    • Export Citation
  • Reddy, M .V., A. K. Mitra, I. M. Momin, A. K. Mitra, and D. S. Pai, 2019: Evaluation and inter-comparison of high-resolution multi-satellite rainfall products over India for the southwest monsoon period. Int. J. Remote Sens., 40, 45774603, https://doi.org/10.1080/01431161.2019.1569786.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, B. R., L. McPhillips, H. Chang, C. Cheng, C. Welty, M. Matsler, D. Iwaniec, and C. I. Davidson, 2018: Pluvial flood risk and opportunities for resilience. Wiley Interdiscip. Rev.: Water, 5, e1302, https://doi.org/10.1002/wat2.1302.

    • Search Google Scholar
    • Export Citation
  • Sahlu, D., E. I. Nikolopoulos, S. A. Moges, E. N. Anagnostou, and D. Hailu, 2016: First evaluation of the day-1 IMERG over the upper Blue Nile basin. J. Hydrometeor., 17, 28752882, https://doi.org/10.1175/JHM-D-15-0230.1.

    • Search Google Scholar
    • Export Citation
  • Sai Krishna, V. V., A. K. Dikshit, and K. Pandey, 2016: Flood modelling with Global Precipitation Measurement (GPM) satellite rainfall data: A case study of Dehradun, Uttarakhand, India. Proc. SPIE, 9880, 98801A, https://doi.org/10.1117/12.2223928.

    • Search Google Scholar
    • Export Citation
  • Sannigrahi, S., S. Rahmat, S. Chakraborti, S. Bhatt, and S. Jha, 2017: Changing dynamics of urban biophysical composition and its impact on urban heat island intensity and thermal characteristics: the case of Hyderabad City, India. Model. Earth Syst. Environ., 3, 647667, https://doi.org/10.1007/s40808-017-0324-x.

    • Search Google Scholar
    • Export Citation
  • Sen Roy, S., 2009: A spatial analysis of extreme hourly precipitation patterns in India. Int. J. Climatol., 29, 345355, https://doi.org/10.1002/joc.1763.

    • Search Google Scholar
    • Export Citation
  • Sen Roy, S., and R. C. Balling Jr., 2007: Diurnal variations in summer season precipitation in India. Int. J. Climatol., 27, 969976, https://doi.org/10.1002/joc.1458.

    • Search Google Scholar
    • Export Citation
  • Sharifi, E., R. Steinacker, and B. Saghafian, 2016: Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens., 8, 135, https://doi.org/10.3390/rs8020135.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly spaced data. Proc. 23rd ACM National Conf., New York, NY, Association for Computing Machinery, 517–524, https://doi.org/10.1145/800186.810616.

  • Shoaib, A. T., and N. S. Rasool, 2015: Correcting real time automatic weather stations data through quality checks and analysis. Yayu Mandal, 41, 6976, https://imetsociety.org/wp-content/pdf/vayumandal/2015/2015_9.pdf.

    • Search Google Scholar
    • Export Citation
  • Singh, A. K., J. N. Tripathi, K. K. Singh, V. Singh, and M. Sateesh, 2019: Comparison of different satellite-derived rainfall products with IMD gridded data over Indian meteorological subdivisions during Indian Summer Monsoon (ISM) 2016 at weekly temporal resolution. J. Hydrol., 575, 13711379, https://doi.org/10.1016/j.jhydrol.2019.02.016.

    • Search Google Scholar
    • Export Citation
  • Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, https://doi.org/10.1029/2009JD011788.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Su, J., H. , Y. Zhu, Y. Cui, and X. Wang, 2019: Evaluating the hydrological utility of latest IMERG products over the Upper Huaihe River Basin, China. Atmos. Res., 225, 1729, https://doi.org/10.1016/j.atmosres.2019.03.025.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and Z. Duan, 2017: Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9, 720, https://doi.org/10.3390/rs9070720.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Search Google Scholar
    • Export Citation
  • Tang, G., M. P. Clark, S. M. Papalexiou, Z. Ma, and Y. Hong, 2020: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697.

    • Search Google Scholar
    • Export Citation
  • Tang, S., R. Li, J. He, H. Wang, X. Fan, and S. Yao, 2020: Comparative evaluation of the GPM IMERG early, late, and final hourly precipitation products using the CMPA data over Sichuan Basin of China. Water, 12, 554, https://doi.org/10.3390/w12020554.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456, 1229, https://doi.org/10.1016/j.jhydrol.2012.05.052.

    • Search Google Scholar
    • Export Citation
  • Thakur, M. K., T. V. L. Kumar, M. S. Narayanan, K. R. Kundeti, and H. Barbosa, 2020: Analytical study of the performance of the IMERG over the Indian landmass. Meteor. Appl., 27, e1908, https://doi.org/10.1002/met.1908.

    • Search Google Scholar
    • Export Citation
  • UN DESA, 2018: World Urbanization Prospects 2018. Accessed 30 May 2021, https://population.un.org/wup/Download/.

  • Varlas, G., and Coauthors, 2019: A multi-platform hydrometeorological analysis of the flash flood event of 15 November 2017 in Attica, Greece. Remote Sens., 11, 45, https://doi.org/10.3390/rs11010045.

    • Search Google Scholar
    • Export Citation
  • Venkatesh, K., R. Maheswaran, and J. Devacharan, 2022: Framework for developing IDF curves using satellite precipitation: A case study using GPM-IMERG V6 data. Earth Sci. Inform., 15, 671687, https://doi.org/10.1007/s12145-021-00708-0.

    • Search Google Scholar
    • Export Citation
  • Verma, P., and S. K. Ghosh, 2018: Study of GPM-IMERG rainfall data product for Gangotri Glacier. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-5, 383388, https://doi.org/10.5194/isprs-archives-XLII-5-383-2018.

    • Search Google Scholar
    • Export Citation
  • Wang, C., G. Tang, Z. Han, X. Guo, and Y. Hong, 2018: Global intercomparison and regional evaluation of GPM IMERG version-03, version-04 and its latest version-05 precipitation products: Similarity, difference and improvements. J. Hydrol., 564, 342356, https://doi.org/10.1016/j.jhydrol.2018.06.064.

    • Search Google Scholar
    • Export Citation
  • Wang, W., H. Lu, T. Zhao, L. Jiang, and J. Shi, 2017: Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 25402549, https://doi.org/10.1109/JSTARS.2017.2672786.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic press, 676 pp.

  • Xu, S., Y. Shen, and Z. Du, 2016: Tracing the source of the errors in hourly IMERG using a decomposition evaluation scheme. Atmosphere, 7, 161, https://doi.org/10.3390/atmos7120161.

    • Search Google Scholar
    • Export Citation
  • Yu, L., G. Leng, A. Python, and J. Peng, 2021: A comprehensive evaluation of latest GPM IMERG V06 early, late and final precipitation products across China. Remote Sens., 13, 1208, https://doi.org/10.3390/rs13061208.

    • Search Google Scholar
    • Export Citation
  • Zevenbergen, C., A. Cashman, N. Evelpidou, E. Pasche, S. Garvin, and R. Ashley, 2010: Urban Flood Management. CRC Press, 340 pp.

All Time Past Year Past 30 Days
Abstract Views 1607 1607 29
Full Text Views 159 159 12
PDF Downloads 111 111 5