Developing Impacts-Based Drought Thresholds for Ohio

Ning Zhang aDepartment of Geography, The Ohio State University, Columbus, Ohio
bAgriculture and Natural Resources, University of California, Davis, Davis, California

Search for other papers by Ning Zhang in
Current site
Google Scholar
PubMed
Close
,
Zhiying Li aDepartment of Geography, The Ohio State University, Columbus, Ohio
cDepartment of Geography, Dartmouth College, Hanover, New Hampshire

Search for other papers by Zhiying Li in
Current site
Google Scholar
PubMed
Close
, and
Steven M. Quiring aDepartment of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the U.S. Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the state of Ohio: standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), Palmer’s Z index, and Palmer hydrological drought index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.

Ning Zhang and Zhiying Li contributed to the work equally and should be regarded as co-first authors.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiying Li, li.8254@osu.edu

Abstract

Drought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the U.S. Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the state of Ohio: standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), Palmer’s Z index, and Palmer hydrological drought index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.

Ning Zhang and Zhiying Li contributed to the work equally and should be regarded as co-first authors.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiying Li, li.8254@osu.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.8685 MB)
Save
  • Agnolucci, P., and V. De Lipsis, 2020: Long-run trend in agricultural yield and climatic factors in Europe. Climatic Change, 159, 385405, https://doi.org/10.1007/s10584-019-02622-3.

    • Search Google Scholar
    • Export Citation
  • Bachmair, S., I. Kohn, and K. Stahl, 2015: Exploring the link between drought indicators and impacts. Nat. Hazards Earth Syst. Sci., 15, 13811397, https://doi.org/10.5194/nhess-15-1381-2015.

    • Search Google Scholar
    • Export Citation
  • Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre, 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34, 30013023, https://doi.org/10.1002/joc.3887.

    • Search Google Scholar
    • Export Citation
  • Beyene, B. S., A. F. Van Loon, H. A. J. Van Lanen, and P. Torfs, 2014: Investigation of variable threshold level approaches for hydrological drought identification. Hydrol. Earth Syst. Sci. Discuss., 11, 12 76512 797, https://doi.org/10.5194/hessd-11-12765-2014.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, https://doi.org/10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dikici, M., 2020: Drought analysis with different indices for the Asi Basin (Turkey). Sci. Rep., 10, 20739, https://doi.org/10.1038/s41598-020-77827-z.

    • Search Google Scholar
    • Export Citation
  • Falcone, J. A., D. M. Carlisle, D. M. Wolock, and M. R. Meador, 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States: Ecological archives E091-045. Ecology, 91, 621621, https://doi.org/10.1890/09-0889.1.

    • Search Google Scholar
    • Export Citation
  • FAO, 2015: Crop Water Information: Maize. FAO Land and Water division, https://www.fao.org/land-water/databases-and-software/crop-information/maize/en/.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1921: 014: On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 332.

  • Goodrich, G. B., and A. W. Ellis, 2006: Climatological drought in Arizona: An analysis of indicators for guiding the governor’s drought task force. Prof. Geogr., 58, 460469, https://doi.org/10.1111/j.1467-9272.2006.00582.x.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Search Google Scholar
    • Export Citation
  • Hafner, S., 2003: Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: A prevalence of linear growth. Agric. Ecosyst. Environ., 97, 275283, https://doi.org/10.1016/S0167-8809(03)00019-7.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and A. AghaKouchak, 2014: A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeor., 15, 89101, https://doi.org/10.1175/JHM-D-12-0160.1.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Search Google Scholar
    • Export Citation
  • Huang, S., P. Li, Q. Huang, G. Leng, B. Hou, and L. Ma, 2017: The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol., 547, 184195, https://doi.org/10.1016/j.jhydrol.2017.01.041.

    • Search Google Scholar
    • Export Citation
  • Jacobi, J., D. Perrone, L. L. Duncan, and G. Hornberger, 2013: A tool for calculating the Palmer drought indices. Water Resour. Res., 49, 60866089, https://doi.org/10.1002/wrcr.20342.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1986: The sensitivity of the Palmer drought severity index and Palmer’s Z index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25, 7786, https://doi.org/10.1175/1520-0450(1986)025<0077:TSOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, https://doi.org/10.1175/1520-0477-83.8.1167.

    • Search Google Scholar
    • Export Citation
  • Kukal, M. S., and S. Irmak, 2018: Climate-driven crop yield and yield variability and climate change impacts on the US Great Plains agricultural production. Sci. Rep., 8, 3450, https://doi.org/10.1038/s41598-018-21848-2.

    • Search Google Scholar
    • Export Citation
  • Kumar, M. N., C. S. Murthy, M. V. R. S. Sai, and P. S. Roy, 2009: On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteor. Appl., 16, 381389, https://doi.org/10.1002/met.136.

    • Search Google Scholar
    • Export Citation
  • Labudová, L., M. Labuda, and J. Takáč, 2017: Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland. Theor. Appl. Climatol., 128, 491506, https://doi.org/10.1007/s00704-016-1870-2.

    • Search Google Scholar
    • Export Citation
  • Leasor, Z. T., S. M. Quiring, and M. D. Svoboda, 2020: Utilizing objective drought severity thresholds to improve drought monitoring. J. Appl. Meteor. Climatol., 59, 455475, https://doi.org/10.1175/JAMC-D-19-0217.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and S. M. Quiring, 2021: Identifying the dominant drivers of hydrological change in the contiguous United States. Water Resour. Res., 57, e2021WR029738, https://doi.org/10.1029/2021WR029738.

    • Search Google Scholar
    • Export Citation
  • Link, R., T. B. Wild, A. C. Snyder, M. I. Hejazi, and C. R. Vernon, 2020: 100 years of data is not enough to establish reliable drought thresholds. J. Hydrol. X, 7, 100052, https://doi.org/10.1016/j.hydroa.2020.100052.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Ren, M. Ma, X. Yang, F. Yuan, and S. Jiang, 2016: An insight into the Palmer drought mechanism based indices: Comprehensive comparison of their strengths and limitations. Stochastic Environ. Res. Risk Assess., 30, 119136, https://doi.org/10.1007/s00477-015-1042-4.

    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Zhu, Y. Pan, J. Bai, and S. Li, 2018: Performance of different drought indices for agriculture drought in the North China Plain. J. Arid Land, 10, 507516, https://doi.org/10.1007/s40333-018-0005-2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, M. C. Anderson, and Y. Zhong, 2017: Predicting US drought monitor states using precipitation, soil moisture, and evapotranspiration anomalies. Part I: Development of a nondiscrete USDM index. J. Hydrometeor., 18, 19431962, https://doi.org/10.1175/JHM-D-16-0066.1.

    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, S. Beguería, J. M. García-Ruiz, and J. M. Cuadrat, 2010: The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J. Hydrol., 386, 1326, https://doi.org/10.1016/j.jhydrol.2010.01.001.

    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. C. González-Hidalgo, J. I. López-Moreno, and N. Cortesi, 2013: Hydrological drought response to meteorological drought in the Iberian Peninsula. Climate Res., 58, 117131, https://doi.org/10.3354/cr01177.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. J. Carbone, and P. Gao, 2017: Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agric. For. Meteor., 237, 196208, https://doi.org/10.1016/j.agrformet.2017.02.001.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. J. Carbone, X. Huang, K. Lackstrom, and P. Gao, 2020: Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agric. For. Meteor., 292, 108124, https://doi.org/10.1016/j.agrformet.2020.108124.

    • Search Google Scholar
    • Export Citation
  • Mallya, G., L. Zhao, X. C. Song, D. Niyogi, and R. S. Govindaraju, 2013: 2012 Midwest drought in the United States. J. Hydrol. Eng., 18, 737745, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000786.

    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., D. W. Pierce, J. F. Kalansky, D. R. Cayan, and J. T. Abatzoglou, 2020: Projected changes in reference evapotranspiration in California and Nevada: Implications for drought and wildland fire danger. Earths Future, 8, e2020EF001736, https://doi.org/10.1029/2020EF001736.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Boston, MA, Amer. Meteor. Soc., 179183.

  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Search Google Scholar
    • Export Citation
  • Mizzell, E. H. P., 2008: Improving drought detection in the Carolinas: Evaluation of local, state, and federal drought indicators. Ph.D. dissertation, Department of Geology, University of South Carolina, 149 pp.

  • Myronidis, D., D. Fotakis, K. Ioannou, and K. Sgouropoulou, 2018: Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow. Hydrol. Sci. J., 63, 20052019, https://doi.org/10.1080/02626667.2018.1554285.

    • Search Google Scholar
    • Export Citation
  • Osborne, T. M., and T. R. Wheeler, 2013: Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett., 8, 024001, https://doi.org/10.1088/1748-9326/8/2/024001.

    • Search Google Scholar
    • Export Citation
  • Otto, F. E., and Coauthors, 2018: Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett., 13, 124010, https://doi.org/10.1088/1748-9326/aae9f9.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Park, S., J. Im, E. Jang, and J. Rhee, 2016: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric. For. Meteor., 216, 157169, https://doi.org/10.1016/j.agrformet.2015.10.011.

    • Search Google Scholar
    • Export Citation
  • Peña-Gallardo, M., S. M. Vicente-Serrano, F. Domínguez-Castro, S. Quiring, M. Svoboda, S. Beguería, and J. Hannaford, 2018: Effectiveness of drought indices in identifying impacts on major crops across the USA. Climate Res., 75, 221240, https://doi.org/10.3354/cr01519.

    • Search Google Scholar
    • Export Citation
  • Peña-Gallardo, M., and Coauthors, 2019: Response of crop yield to different time-scales of drought in the United States: Spatio-temporal patterns and climatic and environmental drivers. Agric. For. Meteor., 264, 4055, https://doi.org/10.1016/j.agrformet.2018.09.019.

    • Search Google Scholar
    • Export Citation
  • Qiu, S., 2013: Improving the Palmer drought severity index by incorporating snow and frozen ground. M.S. thesis, Dept. of Atmospheric Sciences, University of North Dakota, 82 pp., https://commons.und.edu/cgi/viewcontent.cgi?article=2471&context=theses.

  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48, 12171229, https://doi.org/10.1175/2009JAMC2088.1.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of agricultural drought indices for the Canadian Prairies. Agric. For. Meteor., 118, 4962, https://doi.org/10.1016/S0168-1923(03)00072-8.

    • Search Google Scholar
    • Export Citation
  • Rippey, B. R., 2015: The US drought of 2012. Wea. Climate Extremes, 10, 5764, https://doi.org/10.1016/j.wace.2015.10.004.

  • Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahl, 2015: Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol., 35, 40274040, https://doi.org/10.1002/joc.4267.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., 2003: Drought indicators and triggers: A stochastic approach to evaluation. J. Amer. Water Resour. Assoc., 39, 12171233, https://doi.org/10.1111/j.1752-1688.2003.tb03704.x.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., 2014: Drought information for improving preparedness in the western states. Bull. Amer. Meteor. Soc., 95, 843847, https://doi.org/10.1175/BAMS-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A. C., and L. F. Cavalcanti, 2006: Developing multiple indicators and triggers for drought plans. J. Water Resour. Plann. Manage., 132, 164174, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(164).

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., S. F. Iacobellis, and D. R. Cayan, 2015: Developing and evaluating drought indicators for decision-making. J. Hydrometeor., 16, 17931803, https://doi.org/10.1175/JHM-D-14-0234.1.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M. D., 2016: Essays on decision support for drought mitigation planning: A tale of three tools. Ph.D. dissertation, University of Nebraska–Lincoln, 24 pp.

  • Svoboda, M. D., and B. A. Fuchs, 2016: Handbook of drought indicators and indices. WMO-1173, 45 pp., https://library.wmo.int/doc_num.php?explnum_id=3057.

  • Tian, L., S. Yuan, and S. M. Quiring, 2018: Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteor., 249, 107119, https://doi.org/10.1016/j.agrformet.2017.11.024.

    • Search Google Scholar
    • Export Citation
  • Tijdeman, E., J. Hannaford, and K. Stahl, 2018: Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci., 22, 10511064, https://doi.org/10.5194/hess-22-1051-2018.

    • Search Google Scholar
    • Export Citation
  • Valayamkunnath, P., M. Barlage, F. Chen, D. J. Gochis, and K. J. Franz, 2020: Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach. Sci. Data, 7, 257, https://doi.org/10.1038/s41597-020-00596-x.

    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., 2015: Hydrological drought explained. Wiley Interdiscip. Rev. Water, 2, 359392, https://doi.org/10.1002/wat2.1085.

  • Vasiliades, L., and A. Loukas, 2009: Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece. Desalination, 237, 321, https://doi.org/10.1016/j.desal.2007.12.019.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2012: Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact., 16, https://doi.org/10.1175/2012EI000434.1.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. van Beek, N. Wanders, and M. F. P. Bierkens, 2013: Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett., 8, 034036, https://doi.org/10.1088/1748-9326/8/3/034036.

    • Search Google Scholar
    • Export Citation
  • Wan, W., and Coauthors, 2017: Hydrological drought in the Anthropocene: Impacts of local water extraction and reservoir regulation in the U.S. J. Geophys. Res. Atmos., 122, 11 31311 328, https://doi.org/10.1002/2017JD026899.

    • Search Google Scholar
    • Export Citation
  • Wanders, N., and Y. Wada, 2015: Human and climate impacts on the 21st century hydrological drought. J. Hydrol., 526, 208220, https://doi.org/10.1016/j.jhydrol.2014.10.047.

    • Search Google Scholar
    • Export Citation
  • Wang, D., and M. Hejazi, 2011: Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res., 47, W00J12, https://doi.org/10.1029/2010WR010283.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, Vol. I, edited by D. A. Wilhite, Routledge, 3–18.

  • World Meteorological Organization, 2012: Standardized precipitation index user guide. WMO-1090, 16 pp., https://library.wmo.int/doc_num.php?explnum_id=7768.

  • Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007: Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol., 27, 6579, https://doi.org/10.1002/joc.1371.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, D. Mocko, C. D. Peters-Lidard, J. Sheffield, J. Dong, and E. F. Wood, 2014: Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble. J. Hydrometeor., 15, 16361650, https://doi.org/10.1175/JHM-D-13-058.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., M. Zhang, L. Wang, and T. Zhou, 2017: Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrol. Earth Syst. Sci., 21, 54775492, https://doi.org/10.5194/hess-21-5477-2017.

    • Search Google Scholar
    • Export Citation
  • Zargar, A., R. Sadiq, B. Naser, and F. I. Khan, 2011: A review of drought indices. Environ. Rev., 19, 333349, https://doi.org/10.1139/a11-013.

    • Search Google Scholar
    • Export Citation
  • Zhai, J., B. Su, V. Krysanova, T. Vetter, C. Gao, and T. Jiang, 2010: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Climate, 23, 649663, https://doi.org/10.1175/2009JCLI2968.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1487 1487 49
Full Text Views 228 228 1
PDF Downloads 247 247 1