Comparison of Three Radar-Based Precipitation Nowcasts for the Extreme July 2021 Flooding Event in Germany

Mohamed Saadi aInstitute of Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich, Germany
bCentre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany
cInstitut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS-INPT-UPS, Toulouse, France

Search for other papers by Mohamed Saadi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8951-3993
,
Carina Furusho-Percot aInstitute of Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich, Germany
bCentre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany
dU.S. 1116 AGROCLIM, INRAE Centre de Recherche PACA, Avignon, France

Search for other papers by Carina Furusho-Percot in
Current site
Google Scholar
PubMed
Close
,
Alexandre Belleflamme aInstitute of Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich, Germany
bCentre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

Search for other papers by Alexandre Belleflamme in
Current site
Google Scholar
PubMed
Close
,
Silke Trömel eInstitute for Geosciences, Department of Meteorology, Universität Bonn, Bonn, Germany
fLaboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J, Bonn, Germany

Search for other papers by Silke Trömel in
Current site
Google Scholar
PubMed
Close
,
Stefan Kollet aInstitute of Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich, Germany
bCentre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

Search for other papers by Stefan Kollet in
Current site
Google Scholar
PubMed
Close
, and
Ricardo Reinoso-Rondinel eInstitute for Geosciences, Department of Meteorology, Universität Bonn, Bonn, Germany
gFaculty of Engineering Science, Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
hDepartment of Meteorological Observations and Research, Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Ricardo Reinoso-Rondinel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts, especially for lead times up to 12 h, but their evaluation depends on a variety of factors, namely, the choice of the hydrological model and the benchmark. We tested three precipitation nowcasting techniques based on radar observations for the disastrous mid-July 2021 event in seven German catchments (140–1670 km2). Two deterministic [advection-based and spectral prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble Prediction System (STEPS)] QPN with a maximum lead time of 3 h were used as input to two hydrological models: a physically based, 3D-distributed model (ParFlowCLM) and a conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For the 14 July 2021 event, we obtained the following key results. 1) According to the quality of the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) compared with adopting zero-precipitation nowcasts (hydrological persistence) as a benchmark. Using a skill-based approach, obtained improvements were up to 7–12 h depending on the benchmark. 2) The three QPN techniques obtained similar performances regardless of the applied hydrological model. 3) Using zero-precipitation nowcasts instead of hydrological persistence as benchmark reduced the added value of QPN. These results highlight the need for combining a skill-based approach with an analysis of the quality of forecasted hydrographs to rigorously estimate the added value of QPN.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mohamed Saadi, mohamed.saadi@toulouse-inp.fr

Abstract

Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts, especially for lead times up to 12 h, but their evaluation depends on a variety of factors, namely, the choice of the hydrological model and the benchmark. We tested three precipitation nowcasting techniques based on radar observations for the disastrous mid-July 2021 event in seven German catchments (140–1670 km2). Two deterministic [advection-based and spectral prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble Prediction System (STEPS)] QPN with a maximum lead time of 3 h were used as input to two hydrological models: a physically based, 3D-distributed model (ParFlowCLM) and a conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For the 14 July 2021 event, we obtained the following key results. 1) According to the quality of the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) compared with adopting zero-precipitation nowcasts (hydrological persistence) as a benchmark. Using a skill-based approach, obtained improvements were up to 7–12 h depending on the benchmark. 2) The three QPN techniques obtained similar performances regardless of the applied hydrological model. 3) Using zero-precipitation nowcasts instead of hydrological persistence as benchmark reduced the added value of QPN. These results highlight the need for combining a skill-based approach with an analysis of the quality of forecasted hydrographs to rigorously estimate the added value of QPN.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mohamed Saadi, mohamed.saadi@toulouse-inp.fr
Save
  • Abrams, M., R. Crippen, and H. Fujisada, 2020: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens., 12, 1156, https://doi.org/10.3390/rs12071156.

    • Search Google Scholar
    • Export Citation
  • Alfieri, L., P. Salamon, F. Pappenberger, F. Wetterhall, and J. Thielen, 2012: Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy, 21, 3549, https://doi.org/10.1016/j.envsci.2012.01.008.

    • Search Google Scholar
    • Export Citation
  • Atencia, A., and I. Zawadzki, 2014: A comparison of two techniques for generating nowcasting ensembles. Part I: Lagrangian ensemble technique. Mon. Wea. Rev., 142, 40364052, https://doi.org/10.1175/MWR-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Atencia, A., and I. Zawadzki, 2015: A comparison of two techniques for generating nowcasting ensembles. Part II: Analogs selection and comparison of techniques. Mon. Wea. Rev., 143, 28902908, https://doi.org/10.1175/MWR-D-14-00342.1.

    • Search Google Scholar
    • Export Citation
  • Auger, L., O. Dupont, S. Hagelin, P. Brousseau, and P. Brovelli, 2015: AROME–NWC: A new nowcasting tool based on an operational mesoscale forecasting system. Quart. J. Roy. Meteor. Soc., 141, 16031611, https://doi.org/10.1002/qj.2463.

    • Search Google Scholar
    • Export Citation
  • Ayzel, G., M. Heistermann, and T. Winterrath, 2019: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geosci. Model Dev., 12, 13871402, https://doi.org/10.5194/gmd-12-1387-2019.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Search Google Scholar
    • Export Citation
  • Belleflamme, A., and Coauthors, 2023: Hydrological forecasting at impact scale: the integrated ParFlow hydrological model at 0.6 km for climate resilient water resource management over Germany. Front. Water, 5, 1183642, https://doi.org/10.3389/frwa.2023.1183642.

    • Search Google Scholar
    • Export Citation
  • Bendjoudi, H., and P. Hubert, 2002: The Gravelius compactness coefficient: Critical analysis of a shape index for drainage basins. Hydrol. Sci. J., 47, 921930, https://doi.org/10.1080/02626660209493000.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., C. Corral, R. Sánchez-Diezma, and D. Sempere-Torres, 2005: Hydrological validation of a radar-based nowcasting technique. J. Hydrometeor., 6, 532549, https://doi.org/10.1175/JHM433.1.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., D. Sempere-Torres, and G. G. S. Pegram, 2011: SBMcast—An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J. Hydrol., 404, 226240, https://doi.org/10.1016/j.jhydrol.2011.04.033.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., M. Surcel, I. Zawadzki, M. Xue, and F. Kong, 2012: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part II: Intercomparison among numerical models and with nowcasting. Mon. Wea. Rev., 140, 26892705, https://doi.org/10.1175/MWR-D-11-00181.1.

    • Search Google Scholar
    • Export Citation
  • Berthet, L., V. Andréassian, C. Perrin, and P. Javelle, 2009: How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrol. Earth Syst. Sci., 13, 819831, https://doi.org/10.5194/hess-13-819-2009.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., C. E. Pierce, and A. W. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132, 21272155, https://doi.org/10.1256/qj.04.100.

    • Search Google Scholar
    • Export Citation
  • Chen, C., J. Twycross, and J. M. Garibaldi, 2017: A new accuracy measure based on bounded relative error for time series forecasting. PLOS ONE, 12, e0174202, https://doi.org/10.1371/journal.pone.0174202.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-Y., S. Trömel, A. Ryzhkov, and C. Simmer, 2021: Assessing the benefits of specific attenuation for quantitative precipitation estimation with a C-band radar network. J. Hydrometeor., 22, 26172631, https://doi.org/10.1175/JHM-D-20-0299.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-Y., R. Reinoso-Rondinel, S. Trömel, C. Simmer, and A. Ryzhkov, 2022: A radar-based quantitative precipitation estimation algorithm to overcome the impact of vertical gradients of warm-rain precipitation: The flood in western Germany on 14 July 2021. J. Hydrometeor., 24, 521536, https://doi.org/10.1175/JHM-D-22-0111.1.

    • Search Google Scholar
    • Export Citation
  • Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, https://doi.org/10.1002/met.1538.

    • Search Google Scholar
    • Export Citation
  • Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, https://doi.org/10.1016/j.jhydrol.2009.06.005.

    • Search Google Scholar
    • Export Citation
  • Coron, L., G. Thirel, O. Delaigue, C. Perrin, and V. Andréassian, 2017: The suite of lumped GR hydrological models in an R package. Environ. Modell. Software, 94, 166171, https://doi.org/10.1016/j.envsoft.2017.05.002.

    • Search Google Scholar
    • Export Citation
  • Duscher, K., A. Günther, A. Richts, P. Clos, U. Philipp, and W. Struckmeier, 2015: The GIS layers of the “International Hydrogeological Map of Europe 1:1,500,000” in a vector format. Hydrogeol. J., 23, 18671875, https://doi.org/10.1007/s10040-015-1296-4.

    • Search Google Scholar
    • Export Citation
  • Dottori, F., and Coauthors, 2018: Increased human and economic losses from river flooding with anthropogenic warming. Nat. Climate Change, 8, 781786, https://doi.org/10.1038/s41558-018-0257-z.

    • Search Google Scholar
    • Export Citation
  • Dougherty, E., and K. L. Rasmussen, 2020: Changes in future flash flood–producing storms in the United States. J. Hydrometeor., 21, 22212236, https://doi.org/10.1175/JHM-D-20-0014.1.

    • Search Google Scholar
    • Export Citation
  • Edijatno, N. de Oliveira Nascimento, X. Yang, Z. Makhlouf, and C. Michel, 1999: GR3J: A daily watershed model with three free parameters. Hydrol. Sci. J., 44, 263277, https://doi.org/10.1080/02626669909492221.

    • Search Google Scholar
    • Export Citation
  • Ficchì, A., C. Perrin, and V. Andréassian, 2019: Hydrological modelling at multiple sub-daily time steps: Model improvement via flux-matching. J. Hydrol., 575, 13081327, https://doi.org/10.1016/j.jhydrol.2019.05.084.

    • Search Google Scholar
    • Export Citation
  • Foresti, L., L. Panziera, P. V. Mandapaka, U. Germann, and A. Seed, 2015: Retrieval of analogue radar images for ensemble nowcasting of orographic rainfall. Meteor. Appl., 22, 141155, https://doi.org/10.1002/met.1416.

    • Search Google Scholar
    • Export Citation
  • Foresti, L., M. Reyniers, A. Seed, and L. Delobbe, 2016: Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium. Hydrol. Earth Syst. Sci., 20, 505527, https://doi.org/10.5194/hess-20-505-2016.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Coauthors, 2021: Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, 107122, https://doi.org/10.1038/s43017-020-00128-6.

    • Search Google Scholar
    • Export Citation
  • Fundel, V. J., N. Fleischhut, S. M. Herzog, M. Göber, and R. Hagedorn, 2019: Promoting the use of probabilistic weather forecasts through a dialogue between scientists, developers and end-users. Quart. J. Roy. Meteor. Soc., 145, 210231, https://doi.org/10.1002/qj.3482.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heuvelink, D., M. Berenguer, C. C. Brauer, and R. Uijlenhoet, 2020: Hydrological application of radar rainfall nowcasting in the Netherlands. Environ. Int., 136, 105431, https://doi.org/10.1016/j.envint.2019.105431.

    • Search Google Scholar
    • Export Citation
  • Imhoff, R. O., C. C. Brauer, A. Overeem, A. H. Weerts, and R. Uijlenhoet, 2020: Spatial and temporal evaluation of radar rainfall nowcasting techniques on 1,533 events. Water Resour. Res., 56, e2019WR026723, https://doi.org/10.1029/2019WR026723.

    • Search Google Scholar
    • Export Citation
  • Imhoff, R. O., C. C. Brauer, K. J. van Heeringen, R. Uijlenhoet, and A. H. Weerts, 2022: Large-sample evaluation of radar rainfall nowcasting for flood early warning. Water Resour. Res., 58, e2021WR031591, https://doi.org/10.1029/2021WR031591.

    • Search Google Scholar
    • Export Citation
  • Junghänel, T., and Coauthors, 2021: Hydro-klimatologische Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im Zusammenhang mit dem Tiefdruckgebiet “Bernd” vom 12. bis 19. Juli 2021. Deutscher Wetterdienst, 16 pp., https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_bernd.pdf;jsessionid=1B3CCDDBF6FF5C13C36F83E0CFB9345F.live11053?__blob=publicationFile&v=10.

  • Kollet, S. J., and R. M. Maxwell, 2006: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, 945958, https://doi.org/10.1016/j.advwatres.2005.08.006.

    • Search Google Scholar
    • Export Citation
  • Kreienkamp, F., and Coauthors, 2021: Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Attribution, https://www.worldweatherattribution.org/heavy-rainfall-which-led-to-severe-flooding-in-western-europe-made-more-likely-by-climate-change.

  • Kuffour, B. N. O., N. B. Engdahl, C. S. Woodward, L. E. Condon, S. Kollet, and R. M. Maxwell, 2020: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: Capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geosci. Model Dev., 13, 13731397, https://doi.org/10.5194/gmd-13-1373-2020.

    • Search Google Scholar
    • Export Citation
  • Langanke, T., M. Steidl, C. Schleicher, and C. Sannier, 2016: Copernicus land monitoring service—High resolution layer imperviousness: Product specifications document. European Environment Agency, 39 pp., https://land.copernicus.eu/user-corner/technical-library/hrl-imperviousness-technical-document-prod-2015.

  • Le Bihan, G., O. Payrastre, E. Gaume, D. Moncoulon, and F. Pons, 2017: The challenge of forecasting impacts of flash floods: Test of a simplified hydraulic approach and validation based on insurance claim data. Hydrol. Earth Syst. Sci., 21, 59115928, https://doi.org/10.5194/hess-21-5911-2017.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Schmid, and J. Joss, 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 12861300, https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801, https://doi.org/10.1029/2005GL023451.

    • Search Google Scholar
    • Export Citation
  • Lovat, A., B. Vincendon, and V. Ducrocq, 2022: Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations. Hydrol. Earth Syst. Sci., 26, 26972714, https://doi.org/10.5194/hess-26-2697-2022.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., 2013: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling. Adv. Water Resour., 53, 109117, https://doi.org/10.1016/j.advwatres.2012.10.001.

    • Search Google Scholar
    • Export Citation
  • Mejsnar, J., Z. Sokol, and J. Minářová, 2018: Limits of precipitation nowcasting by extrapolation of radar reflectivity for warm season in Central Europe. Atmos. Res., 213, 288301, https://doi.org/10.1016/j.atmosres.2018.06.005.

    • Search Google Scholar
    • Export Citation
  • Merz, B., and Coauthors, 2020: Impact forecasting to support emergency management of natural hazards. Rev. Geophys., 58, e2020RG000704, https://doi.org/10.1029/2020RG000704.

    • Search Google Scholar
    • Export Citation
  • Mohr, S., and Coauthors, 2023: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe—Part 1: Event description and analysis. Nat. Hazards Earth Syst. Sci., 23, 525551, https://doi.org/10.5194/nhess-23-525-2023.

    • Search Google Scholar
    • Export Citation
  • Moisselin, J.-M., P. Cau, C. Jauffret, I. Bouissières, and R. Tzanos, 2019: Seamless approach for precipitations within the 0–3 hours forecast-interval. Third European Nowcasting Conf., Madrid, Spain, Agencia Estatal de Meteorología, 1–17, https://hdl.handle.net/20.500.11765/10588.

  • Muñoz-Sabater, J., and Coauthors, 2021: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, 43494383, https://doi.org/10.5194/essd-13-4349-2021.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Ochoa-Rodriguez, S., and Coauthors, 2015: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol., 531, 389407, https://doi.org/10.1016/j.jhydrol.2015.05.035.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne, 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303, 290306, https://doi.org/10.1016/j.jhydrol.2004.08.026.

    • Search Google Scholar
    • Export Citation
  • Panagos, P., 2006: European soil database. GeoConnexion, 5, 3233.

  • Pappenberger, F., H. L. Cloke, D. J. Parker, F. Wetterhall, D. S. Richardson, and J. Thielen, 2015a: The monetary benefit of early flood warnings in Europe. Environ. Sci. Policy, 51, 278291, https://doi.org/10.1016/j.envsci.2015.04.016.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., M. H. Ramos, H. L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller, and P. Salamon, 2015b: How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. J. Hydrol., 522, 697713, https://doi.org/10.1016/j.jhydrol.2015.01.024.

    • Search Google Scholar
    • Export Citation
  • Poméon, T., N. Wagner, C. Furusho, S. Kollet, and R. Reinoso-Rondinel, 2020: Performance of a PDE-based hydrologic model in a flash flood modeling framework in sparsely-gauged catchments. Water, 12, 2157, https://doi.org/10.3390/w12082157.

    • Search Google Scholar
    • Export Citation
  • Pulkkinen, S., D. Nerini, A. A. Pérez Hortal, C. Velasco-Forero, A. Seed, U. Germann, and L. Foresti, 2019: Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1.0). Geosci. Model Dev., 12, 41854219, https://doi.org/10.5194/gmd-12-4185-2019.

    • Search Google Scholar
    • Export Citation
  • Reinoso-Rondinel, R., M. Rempel, M. Schultze, and S. Trömel, 2022: Nationwide radar-based precipitation nowcasting—A localization filtering approach and its application for Germany. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15, 16701691, https://doi.org/10.1109/JSTARS.2022.3144342.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., and E. T. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287289, https://doi.org/10.1038/273287a0.

    • Search Google Scholar
    • Export Citation
  • Ruzanski, E., V. Chandrasekar, and Y. Wang, 2011: The CASA nowcasting system. J. Atmos. Oceanic Technol., 28, 640655, https://doi.org/10.1175/2011JTECHA1496.1.

    • Search Google Scholar
    • Export Citation
  • Saadi, M., L. Oudin, and P. Ribstein, 2020: Crossing the rural–urban boundary in hydrological modelling: How do conceptual rainfall–runoff models handle the specificities of urbanized catchments? Hydrol. Processes, 34, 33313346, https://doi.org/10.1002/hyp.13808.

    • Search Google Scholar
    • Export Citation
  • Saadi, M., C. Furusho-Percot, A. Belleflamme, J.-Y. Chen, S. Trömel, and S. Kollet, 2023: How uncertain are precipitation and peak flow estimates for the July 2021 flooding event? Nat. Hazards Earth Syst. Sci., 23, 159177, https://doi.org/10.5194/nhess-23-159-2023.

    • Search Google Scholar
    • Export Citation
  • Šálek, M., L. Brezková, and P. Novák, 2006: The use of radar in hydrological modeling in the Czech Republic—Case studies of flash floods. Nat. Hazards Earth Syst. Sci., 6, 229236, https://doi.org/10.5194/nhess-6-229-2006.

    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., F. J. Leij, and M. Th. van Genuchten, 2001: ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163176, https://doi.org/10.1016/S0022-1694(01)00466-8.

    • Search Google Scholar
    • Export Citation
  • Schalge, B., V. Haefliger, S. Kollet, and C. Simmer, 2019: Improvement of surface run-off in the hydrological model ParFlow by a scale-consistent river parameterization. Hydrol. Processes, 33, 20062019, https://doi.org/10.1002/hyp.13448.

    • Search Google Scholar
    • Export Citation
  • Seed, A. W., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388, https://doi.org/10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seed, A. W., C. E. Pierce, and K. Norman, 2013: Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme. Water Resour. Res., 49, 66246641, https://doi.org/10.1002/wrcr.20536.

    • Search Google Scholar
    • Export Citation
  • Sokol, Z., J. Mejsnar, L. Pop, and V. Bližňák, 2017: Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach. Atmos. Res., 194, 245257, https://doi.org/10.1016/j.atmosres.2017.05.003.

    • Search Google Scholar
    • Export Citation
  • Speight, L. J., M. D. Cranston, C. J. White, and L. Kelly, 2021: Operational and emerging capabilities for surface water flood forecasting. Wiley Interdiscip. Rev.: Water, 8, e1517, https://doi.org/10.1002/wat2.1517.

    • Search Google Scholar
    • Export Citation
  • UNEP, 1992: World Atlas of Desertification. Edward Arnold, 69 pp.

  • Vivoni, E. R., D. Entekhabi, R. L. Bras, V. Y. Ivanov, M. P. V. Horne, C. Grassotti, and R. N. Hoffman, 2006: Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J. Hydrometeor., 7, 660677, https://doi.org/10.1175/JHM514.1.

    • Search Google Scholar
    • Export Citation
  • Winterrath, T., and Coauthors, 2018: Radar climatology (RADKLIM) version 2017.002; gridded precipitation data for Germany: Radar-based gauge-adjusted one-hour precipitation sum (RW). Deutscher Wetterdienst, accessed 14 April 2023, https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002.

  • Wolfson, M. M., B. E. Forman, R. G. Hallowell, and M. P. Moore, 1999: The growth and decay storm tracker. 8th Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 4.3., https://ams.confex.com/ams/99annual/abstracts/1494.htm.

  • Woo, W.-C., and W.-K. Wong, 2017: Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere, 8, 48, https://doi.org/10.3390/atmos8030048.

    • Search Google Scholar
    • Export Citation
  • Xuan, Y., D. Zhu, P. Triballi, and I. Cluckie, 2014: Forecast uncertainty of a lumped hydrological model coupled with the STEPS radar rainfall nowcasts. Ninth Weather Radar and Hydrology (WRaH) Int. Symp., Washington, DC, WMO, https://cronfa.swan.ac.uk/Record/cronfa19214.

  • Yamazaki, D., D. Ikeshima, J. Sosa, P. D. Bates, G. H. Allen, and T. M. Pavelsky, 2019: MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res., 55, 50535073, https://doi.org/10.1029/2019WR024873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 586 586 42
Full Text Views 219 219 12
PDF Downloads 252 252 12