A Comparative Analysis of the Impact of Low-Level Jets and Atmospheric Rivers in the Central United States

Nabindra Gyawali aAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Nabindra Gyawali in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5761-5514
,
Craig R. Ferguson aAtmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Craig R. Ferguson in
Current site
Google Scholar
PubMed
Close
, and
Lance F. Bosart bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a comparative analysis of atmospheric rivers (ARs) and Great Plains low-level jets (GPLLJs) in the central United States during April–September 1901–2010 using ECMWF’s Coupled Reanalysis of the Twentieth Century (CERA-20C). The analysis is motivated by a perceived need to highlight overlap and synergistic opportunities between traditionally disconnected AR and GPLLJ research. First, using the Guan–Walliser integrated vapor transport (IVT)-based AR classification and Bonner–Whiteman-based GPLLJ classification, we identify days with either an AR and/or GPLLJ spanning 15% of the central United States. These days are grouped into five event samples: 1) all GPLLJ, 2) AR GPLLJ, 3) non-AR GPLLJ, 4) AR non-GPLLJ, and 5) all AR. Then, we quantify differences in the frequency, seasonality, synoptic environment, and extreme weather impacts corresponding to each event sample. Over the twentieth century, April–September AR frequency remained constant whereas GPLLJ frequency significantly decreased. Of GPLLJ days, 36% are associated with a coincident AR. Relative to ARs that are equally probable from April–September, GPLLJs exhibit distinct seasonality, with peak occurrence in July. A 500-hPa geopotential height comparison shows a persistent ridge over the central United States for non-AR GPLLJ days, whereas on AR GPLLJ days, a trough-and-ridge pattern is present over western to eastern CONUS. AR GPLLJ days have 34% greater 850-hPa windspeeds, 53% greater IVT, and 72% greater 24-h precipitation accumulation than non-AR GPLLJ days. In terms of 95th-percentile 850-hPa wind speed, IVT, and 24-h precipitation, that of AR GPLLJs is 25%, 45%, and 23% greater than non-AR GPLLJs, respectively.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 7 August 2023 to identify it as a regular article and not a review article, which was how it appeared when originally published.

Corresponding author: Nabindra Gyawali, ngyawali@albany.edu

Abstract

We present a comparative analysis of atmospheric rivers (ARs) and Great Plains low-level jets (GPLLJs) in the central United States during April–September 1901–2010 using ECMWF’s Coupled Reanalysis of the Twentieth Century (CERA-20C). The analysis is motivated by a perceived need to highlight overlap and synergistic opportunities between traditionally disconnected AR and GPLLJ research. First, using the Guan–Walliser integrated vapor transport (IVT)-based AR classification and Bonner–Whiteman-based GPLLJ classification, we identify days with either an AR and/or GPLLJ spanning 15% of the central United States. These days are grouped into five event samples: 1) all GPLLJ, 2) AR GPLLJ, 3) non-AR GPLLJ, 4) AR non-GPLLJ, and 5) all AR. Then, we quantify differences in the frequency, seasonality, synoptic environment, and extreme weather impacts corresponding to each event sample. Over the twentieth century, April–September AR frequency remained constant whereas GPLLJ frequency significantly decreased. Of GPLLJ days, 36% are associated with a coincident AR. Relative to ARs that are equally probable from April–September, GPLLJs exhibit distinct seasonality, with peak occurrence in July. A 500-hPa geopotential height comparison shows a persistent ridge over the central United States for non-AR GPLLJ days, whereas on AR GPLLJ days, a trough-and-ridge pattern is present over western to eastern CONUS. AR GPLLJ days have 34% greater 850-hPa windspeeds, 53% greater IVT, and 72% greater 24-h precipitation accumulation than non-AR GPLLJ days. In terms of 95th-percentile 850-hPa wind speed, IVT, and 24-h precipitation, that of AR GPLLJs is 25%, 45%, and 23% greater than non-AR GPLLJs, respectively.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 7 August 2023 to identify it as a regular article and not a review article, which was how it appeared when originally published.

Corresponding author: Nabindra Gyawali, ngyawali@albany.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.5656 MB)
Save
  • Agrawal, S., C. R. Ferguson, L. Bosart, and D. A. Burrows, 2021: Teleconnections governing the interannual variability of Great Plains low-level jets in May. J. Climate, 34, 47854802, https://doi.org/10.1175/JCLI-D-20-0451.1.

    • Search Google Scholar
    • Export Citation
  • Algarra, I., J. Eiras-Barca, G. Miguez-Macho, R. Nieto, and L. Gimeno, 2019: On the assessment of the moisture transport by the Great Plains low-level jet. Earth Syst. Dyn., 10, 107119, https://doi.org/10.5194/esd-10-107-2019.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and Model Forecast Cycle: The rapid refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., A. M. Ramos, R. M. Trigo, R. Tomé, and C. J. C. Reason, 2018: The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. J. Hydrometeor., 19, 127142, https://doi.org/10.1175/JHM-D-17-0111.1.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, M. A. Campbell, G. Xia, and L. F. Bosart, 2019a: An objective classification and analysis of upper-level coupling to the Great Plains low-level jet over the twentieth century. J. Climate, 32, 71277152, https://doi.org/10.1175/JCLI-D-18-0891.1.

    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, and L. F. Bosart, 2019b: Great Plains low-level jet occurrence and upper-level coupling in CERA-20C. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 1 May 2023, https://doi.org/10.5065/KDB5-9X72.

  • Burrows, D. A., C. R. Ferguson, and L. F. Bosart, 2020: The role of upper-level coupling on Great Plains low-level jet structure and variability. J. Atmos. Sci., 77, 43174335, https://doi.org/10.1175/JAS-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, M. Wigmosta, and M. Richmond, 2019: Impact of atmospheric rivers on surface hydrological processes in western U.S. watersheds. J. Geophys. Res. Atmos., 124, 88968916, https://doi.org/10.1029/2019JD030468.

    • Search Google Scholar
    • Export Citation
  • Cobb, A., A. Michaelis, S. Iacobellis, F. M. Ralph, and L. Delle Monache, 2021: Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Mon. Wea. Rev., 149, 623644, https://doi.org/10.1175/MWR-D-20-0177.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2004: Fifty-two years of pineapple-express storms across the West Coast of North America. California Energy Commission PIER Rep. CEC-500-2005-004, 15 pp., https://pubs.er.usgs.gov/publication/70175879.

  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter III, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, https://doi.org/10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Feng, X., K. Haines, and E. de Boisséson, 2018: Coupling of surface air and sea surface temperatures in the CERA-20C reanalysis. Quart. J. Roy. Meteor. Soc., 144, 195207, https://doi.org/10.1002/qj.3194.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., 2022: Changes in Great Plains low-level jet structure and associated precipitation over the 20th century. J. Geophys. Res. Atmos., 127, e2021JD035859, https://doi.org/10.1029/2021JD035859.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2014: An evaluation of the statistical homogeneity of the twentieth century reanalysis. Climate Dyn., 42, 28412866, https://doi.org/10.1007/s00382-013-1996-1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., S. Agrawal, M. C. Beauharnois, G. Xia, D. A. Burrows, and L. F. Bosart, 2020: Assimilation of satellite-derived soil moisture for improved forecasts of the Great Plains low-level jet. Mon. Wea. Rev., 148, 46074627, https://doi.org/10.1175/MWR-D-20-0185.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, https://doi.org/10.1175/2010MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., and A. Shapiro, 2019: Clarifying the baroclinic contribution to the Great Plains low-level jet frequency maximum. Mon. Wea. Rev., 147, 34813493, https://doi.org/10.1175/MWR-D-19-0024.1.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour., 41, 117141, https://doi.org/10.1146/annurev-environ-110615-085558.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321337, https://doi.org/10.1175/JHM-D-17-0114.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 56055619, https://doi.org/10.1175/JCLI-D-16-0875.1.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 199 pp.

  • Kingston, D. G., D. A. Lavers, and D. M. Hannah, 2022: Characteristics and large-scale drivers of atmospheric rivers associated with extreme floods in New Zealand. Int. J. Climatol., 42, 32083224, https://doi.org/10.1002/joc.7415.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Changnon, and J. R. Angel, 1994: Climatic aspects of the 1993 upper Mississippi River basin flood. Bull. Amer. Meteor. Soc., 75, 811822, https://doi.org/10.1175/1520-0477(1994)075<0811:CAOTUM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013a: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013b: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lora, J. M., C. A. Shields, and J. J. Rutz, 2020: Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophys. Res. Lett., 47, e2020GL089302, https://doi.org/10.1029/2020GL089302.

    • Search Google Scholar
    • Export Citation
  • Ma, W., G. Chen, Y. Peings, and N. Alviz, 2021: Atmospheric river response to Arctic sea ice loss in the Polar Amplification Model Intercomparison Project. Geophys. Res. Lett., 48, e2021GL094883, https://doi.org/10.1029/2021GL094883.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Means, L. L., 1954: A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the Middle West. Bull. Amer. Meteor. Soc., 35, 166170, https://doi.org/10.1175/1520-0477-35.4.166.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Montini, T. L., C. Jones, and L. M. V. Carvalho, 2019: The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos., 124, 12001218, https://doi.org/10.1029/2018JD029634.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic Basin tropical cyclones. Mon. Wea. Rev., 141, 10221047, https://doi.org/10.1175/MWR-D-12-00178.1.

    • Search Google Scholar
    • Export Citation
  • Nash, D., D. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 68046821, https://doi.org/10.1029/2017JD028130.

    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 11441166, https://doi.org/10.1002/2016WR019033.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., and Coauthors, 2022: Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos., 127, e2021JD036013, https://doi.org/10.1029/2021JD036013.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Stat. Soc., 28C, 126135, https://doi.org/10.2307/2346729.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2020: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, https://doi.org/10.1175/JAS-D-13-0243.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2019: ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit Northern California’s Russian river watershed? Climate Dyn., 52, 49734994, https://doi.org/10.1007/s00382-018-4427-5.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2020: West Coast forecast challenges and development of atmospheric river reconnaissance. Bull. Amer. Meteor. Soc., 101, E1357E1377, https://doi.org/10.1175/BAMS-D-19-0183.1.

    • Search Google Scholar
    • Export Citation
  • Reid, K. J., A. D. King, T. P. Lane, and D. Hudson, 2022: Tropical, subtropical, and extratropical atmospheric rivers in the Australian region. J. Climate, 35, 26972708, https://doi.org/10.1175/JCLI-D-21-0606.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, https://doi.org/10.1175/2011JCLI4227.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and Coauthors, 2019: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13 77713 802, https://doi.org/10.1029/2019JD030936.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and J. G. Gebauer, 2018: Mesoscale ascent in nocturnal low-level jets. J. Atmos. Sci., 75, 14031427, https://doi.org/10.1175/JAS-D-17-0279.1.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., N. Rosenbloom, S. Bates, C. Hannay, A. Hu, A. E. Payne, J. J. Rutz, and J. Truesdale, 2019: Meridional heat transport during atmospheric rivers in high‐resolution CESM climate projections. Geophys. Res. Lett., 46, 14 70214 712, https://doi.org/10.1029/2019GL085565.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Song, H.-J., C. R. Ferguson, and J. K. Roundy, 2016: Land–atmosphere coupling at the southern Great Plains Atmospheric Radiation Measurement (ARM) field site and its role in anomalous afternoon peak precipitation. J. Hydrometeor., 17, 541556, https://doi.org/10.1175/JHM-D-15-0045.1.

    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus Jr., 2016a: WRF forecasts of Great Plains nocturnal low-level jet driven MCSs. Part I: Correlation between low-level jet forecast accuracy and MCS precipitation forecast skill. Wea. Forecasting, 31, 13011323, https://doi.org/10.1175/WAF-D-15-0151.1.

    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus, 2016b: WRF forecasts of Great Plains nocturnal low-level jet driven MCSs. Part II: Differences between strongly and weakly forced low-level jet environments. Wea. Forecasting, 31, 14911510, https://doi.org/10.1175/WAF-D-15-0150.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950a: A rank-invariant method of linear and polynomial regression analysis, I. Proc. K. Ned. Akad. Wet., 53A, 386392.

  • Theil, H., 1950b: A rank-invariant method of linear and polynomial regression analysis, II. Proc. K. Ned. Akad. Wet., 53A, 521525.

  • Theil, H., 1950c: A rank-invariant method of linear and polynomial regression analysis, III. Proc. K. Ned. Akad. Wet., 53A, 13971412.

    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre Sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev., 106, 131137, https://doi.org/10.1175/1520-0493(1978)106<0131:OTIOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108, 16891696, https://doi.org/10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vázquez, M., I. Algarra, J. Eiras-Barca, A. M. Ramos, R. Nieto, and L. Gimeno, 2019: Atmospheric rivers over the Arctic: Lagrangian characterisation of their moisture sources. Water, 11, 41, https://doi.org/10.3390/w11010041.

    • Search Google Scholar
    • Export Citation
  • Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeor., 19, 16711687, https://doi.org/10.1175/JHM-D-18-0006.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and T.-C. Chen, 2009: The late-spring maximum of rainfall over the U.S. central plains and the role of the low-level jet. J. Climate, 22, 46964709, https://doi.org/10.1175/2009JCLI2719.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, M., and Coauthors, 2021: Improved forecast skill through the assimilation of dropsonde observations from the Atmospheric River Reconnaissance program. J. Geophys. Res. Atmos., 126, e2021JD034967, https://doi.org/10.1029/2021JD034967.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., T. A. O’Brien, P. A. Ullrich, W. D. Collins, C. M. Patricola, and A. M. Rhoades, 2021: Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. J. Geophys. Res. Atmos., 126, e2020JD033711, https://doi.org/10.1029/2020JD033711.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 532 532 22
Full Text Views 317 317 5
PDF Downloads 340 340 4