Evaluation of Seasonal Differences among Three NOAA Climate Data Records of Precipitation

Olivier P. Prat aCooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina

Search for other papers by Olivier P. Prat in
Current site
Google Scholar
PubMed
Close
and
Brian R. Nelson bCenter for Weather and Climate, NOAA/NESDIS/NCEI, Asheville, North Carolina

Search for other papers by Brian R. Nelson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three satellite precipitation datasets—CMORPH, PERSIANN-CDR, and GPCP—from the NOAA/Climate Data Record program were evaluated in their ability to capture seasonal differences in precipitation for the period 2007–18 over the conterminous United States. Data from the in situ U.S. Climate Reference Network (USCRN) provided reference precipitation measurements and collocated atmospheric conditions (temperature) at the daily scale. Satellite precipitation products’ (SPP) performance with respect to cold season precipitation was compared to warm season and full-year analysis for benchmarking purposes. Considering an ensemble of typical performance metrics including accuracy, false alarm ratio, probability of detection, probability of false detection, and the Kling–Gupta efficiency (KGE) that combines correlation, bias, and variability, we found that the three SPPs displayed better performances during the warm season than during the cold season. Among the three datasets, CMORPH displayed better performance—smaller bias, higher correlation, and a better KGE score—than the two other SPPs on an annual basis and during the warm season. During the cold season, CMORPH showed the worst performance at higher latitudes over areas experiencing recurring snow or frozen and mixed precipitation. CMORPH’s performances were further degraded compared to PERSIANN-CDR and GPCP when considering freezing temperatures (T < 0°C) due to the inability to microwave sensors to retrieve precipitation over snow-covered surface. However, for cold rainfall events detected simultaneously by the satellite and the USCRN stations (i.e., conditional case), CMORPH performance noticeably improved but remained inferior to the two other datasets. The quantification of seasonal precipitation errors and biases for three satellite precipitation datasets presented in this work provides an objective basis for the improvement of rainfall retrieval algorithms of the next generation of satellite precipitation products.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier P. Prat, opprat@ncsu.edu

Abstract

Three satellite precipitation datasets—CMORPH, PERSIANN-CDR, and GPCP—from the NOAA/Climate Data Record program were evaluated in their ability to capture seasonal differences in precipitation for the period 2007–18 over the conterminous United States. Data from the in situ U.S. Climate Reference Network (USCRN) provided reference precipitation measurements and collocated atmospheric conditions (temperature) at the daily scale. Satellite precipitation products’ (SPP) performance with respect to cold season precipitation was compared to warm season and full-year analysis for benchmarking purposes. Considering an ensemble of typical performance metrics including accuracy, false alarm ratio, probability of detection, probability of false detection, and the Kling–Gupta efficiency (KGE) that combines correlation, bias, and variability, we found that the three SPPs displayed better performances during the warm season than during the cold season. Among the three datasets, CMORPH displayed better performance—smaller bias, higher correlation, and a better KGE score—than the two other SPPs on an annual basis and during the warm season. During the cold season, CMORPH showed the worst performance at higher latitudes over areas experiencing recurring snow or frozen and mixed precipitation. CMORPH’s performances were further degraded compared to PERSIANN-CDR and GPCP when considering freezing temperatures (T < 0°C) due to the inability to microwave sensors to retrieve precipitation over snow-covered surface. However, for cold rainfall events detected simultaneously by the satellite and the USCRN stations (i.e., conditional case), CMORPH performance noticeably improved but remained inferior to the two other datasets. The quantification of seasonal precipitation errors and biases for three satellite precipitation datasets presented in this work provides an objective basis for the improvement of rainfall retrieval algorithms of the next generation of satellite precipitation products.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier P. Prat, opprat@ncsu.edu
Save
  • Adler, R. F., M. Sapiano, and J.-J. Wang, 2017a: Precipitation – Global Precipitation Climatology Project (GPCP) monthly (01B-34). Climate Algorithm Theoretical Basis Doc. (C-ATBD), revision 2, 33 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation_GPCP-Monthly/AlgorithmDescription_01B-34.pdf.

  • Adler, R. F., M. Sapiano, and J.-J. Wang, 2017b: Global Precipitation Climatology Project (GPCP) daily analysis precipitation – GPCP daily CDR. Climate Algorithm Theoretical Basis Doc. (C-ATBD), 21 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation_GPCP-Daily/AlgorithmDescription_01B-35.pdf.

  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi, 2012: Systematic and random error components in satellite precipitation datasets. Geophys. Res. Lett., 39, L09406, https://doi.org/10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., B. R. Nelson, T. Smith, and O. P. Prat, 2018: The AMSU-based Hydrological Bundle Climate Data Record—Description and comparison with other data sets. Remote Sens., 10, 1640, https://doi.org/10.3390/rs10101640.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., M. M. Bitew, F. A. Hirpa, and G. N. Tesfay, 2014: Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain. Water Resour. Res., 50, 87758790, https://doi.org/10.1002/2013WR014500.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martín, J. Stout, and D. N. Sikdar, 1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev., 106, 11531171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., M. Gebremichael, and T. Hopson, 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, https://doi.org/10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., H. Ashouri, D. Braithwaite, and S. Sorooshian, 2014: Precipitation PERSIANN-CDR. Climate Algorithm Theoretical Basis Doc. (C-ATBD), revision 2, 30 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/AlgorithmDescription_01B-16.pdf.

  • Huffman, G. J., R. F. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, P. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katiraie-Boroujerdy, P.-S., A. A. Asanjan, K.-L. Hsu, and S. Sorooshian, 2017: Intercomparison of PERSIANN-CDR andTRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res., 193, 3649, https://doi.org/10.1016/j.atmosres.2017.04.005.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kidd, C., V. Levizzani, and S. Laviola, 2010: Quantitative precipitation estimation from Earth observation satellites. Rainfall State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 127–158.

  • Kling, H., M. Fuchs, and M. Paulin, 2012: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424–425, 264277, https://doi.org/10.1016/j.jhydrol.2012.01.011.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, https://doi.org/10.1175/BAMS-D-11-00171.1.

    • Search Google Scholar
    • Export Citation
  • Leeper, R. D., M. A. Palecki, and E. Davis, 2015: Methods to calculate precipitation from weighing-bucket gauges with redundant depth measurements. J. Atmos. Oceanic Technol., 32, 11791190, https://doi.org/10.1175/JTECH-D-14-00185.1.

    • Search Google Scholar
    • Export Citation
  • Massari, C., W. Crow, and L. Brocca, 2017: An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci., 21, 43474361, https://doi.org/10.5194/hess-21-4347-2017.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Miao, C., H. Ashouri, K.-L. Hsu, S. Sorooshian, and Q. Duan, 2015: Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeor., 16, 13871396, https://doi.org/10.1175/JHM-D-14-0174.1.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. E. Lane, 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512533, https://doi.org/10.1016/j.atmosres.2009.08.017.

    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, and R. D. Leeper, 2021a: Using ancillary information from radar-based observations and rain gauges to identify error and bias. J. Hydrometeor., 22, 12491258, https://doi.org/10.1175/JHM-D-20-0193.1.

    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, and R. D. Leeper, 2021b: An investigation of NEXRAD-based quantitative precipitation estimates in Alaska. Remote Sens., 13, 3202, https://doi.org/10.3390/rs13163202.

    • Search Google Scholar
    • Export Citation
  • Nguyen, P., M. Ombadi, S. Sorooshian, K.-L. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. R. Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci., 22, 58015816, https://doi.org/10.5194/hess-22-5801-2018.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2020: Satellite precipitation measurements and extreme rainfall. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Vol. 2, Springer, 761–790, https://doi.org/10.1007/978-3-030-35798-6_16.

  • Prat, O. P., R. D. Leeper, J. E. Bell, B. R. Nelson, J. Adams, and S. Ansari, 2018: Toward earlier drought detection using remotely sensed precipitation data from the Reference Environmental Data Record (REDR) CMORPH. Geophysical Research Abstracts, Vol. 20, Abstract EGU2018-11468-1, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-11468-1.pdf.

  • Prat, O. P., A. M. Courtright, R. D. Leeper, B. R. Nelson, R. Bilotta, J. Adams, and S. Ansari, 2020: Operational near-real time drought monitoring using global satellite precipitation estimates. 2020 EGU General Assembly, Online, EGU, EGU2020-14871, https://doi.org/10.5194/egusphere-egu2020-14871.

  • Prat, O. P., B. R. Nelson, E. Nick, and R. Leeper, 2021: Global evaluation of gridded satellite precipitation products from the NOAA Climate Data Record program. J. Hydrometeor., 22, 22912310, https://doi.org/10.1175/JHM-D-20-0246.1.

    • Search Google Scholar
    • Export Citation
  • Sadeghi, L., B. Saghafian, and S. Moazami, 2019: Evaluation of IMERG and MRMS remotely sensed snowfall products. Int. J. Remote Sens., 40, 41754192, https://doi.org/10.1080/01431161.2018.1562259.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., 1987: The NESDIS operational convective precipitation estimation technique. Mon. Wea. Rev., 115, 17731793, https://doi.org/10.1175/1520-0493(1987)115<1773:TNOCPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serrat-Capdevila, A., J. B. Valdes, and E. Z. Stakhiv, 2014: Water management applications for satellite precipitation products: Synthesis and recommendations. J. Amer. Water Resour. Assoc., 50, 509525, https://doi.org/10.1111/jawr.12140.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., A. Y. Hou, M. de Castro, R. Checa, F. Cuartero, and A. P. Barros, 2011: Precipitation estimates for hydroelectricity. Energy Environ. Sci., 4, 44354448, https://doi.org/10.1039/c1ee01745d.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, J. B. Eylander, R. J. Joyce, and G. J. Huffman, 2009: Component analysis of errors in satellite based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, https://doi.org/10.1175/2769.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, and W. Shi, 2010: CPC unified gauge-based analysis of global daily precipitation. 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A, https://ams.confex.com/ams/90annual/webprogram/Paper163676.html.

  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, and S. Wu, 2018: Bias-corrected CMORPH high-resolution global precipitation estimates. Climate Algorithm Theoretical Basis Doc. (C-ATBD), 35 pp., https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Precipitation-CMORPH/AlgorithmDescription_01B-23.pdf.

  • Yang, W., V. O. John, X. Zhao, H. Lu, and K. R. Knapp, 2016: Satellite climate data records: Development, applications, and societal benefits. Remote Sens., 8, 331, https://doi.org/10.3390/rs8040331.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 318 318 32
Full Text Views 111 111 9
PDF Downloads 108 108 8