Investigating the Strength and Variability of El Niño–Southern Oscillation Teleconnections to Hydroclimate and Maize Yields in Southern and East Africa

Benjamin I. Cook aNASA Goddard Institute for Space Studies, New York, New York
bDivision of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
,
Weston Anderson cEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
dNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Weston Anderson in
Current site
Google Scholar
PubMed
Close
,
Kimberly Slinski cEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
dNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kimberly Slinski in
Current site
Google Scholar
PubMed
Close
,
Shraddhanand Shukla eClimate Hazards Center, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Shraddhanand Shukla in
Current site
Google Scholar
PubMed
Close
, and
Amy McNally dNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Amy McNally in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The state of the El Niño–Southern Oscillation (ENSO) is critical for seasonal climate forecasts, but recent events diverged substantially from expectations in many regions, including sub-Saharan Africa where seasonal forecasts are critical tools for addressing food security. Here, we evaluate 39 years (1982–2020) of data on hydroclimate, leaf area index, and maize yields to investigate the strength of ENSO teleconnections in southern and East Africa. Teleconnections to precipitation, soil moisture, and leaf area index are generally stronger during ENSO phases that cause drought conditions (El Niño in southern Africa and La Niña in East Africa), with seasonality that aligns well with the maize growing seasons. Within maize growing areas, however, ENSO teleconnections to hydroclimate and vegetation are generally weaker compared to the broader geographic regions, especially in East Africa. There is also little evidence that the magnitude of the ENSO event affects the hydroclimate or vegetation response in these maize regions. Maize yields in Kenya, Malawi, South Africa, and Zimbabwe all correlate significantly with hydroclimate and leaf area index, with South Africa and Zimbabwe showing the strongest and most consistent yield responses to ENSO events. Our results highlight the chain of causality from El Niño and La Niña forcing of regional anomalies in hydroclimate to vegetation health and maize yields in southern and East Africa. The large spread across individual ENSO events, however, underscores the limitations of this climate mode for seasonal climate prediction in the region, and the importance of finding additional sources of skill for improving climate and yield forecasts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov

Abstract

The state of the El Niño–Southern Oscillation (ENSO) is critical for seasonal climate forecasts, but recent events diverged substantially from expectations in many regions, including sub-Saharan Africa where seasonal forecasts are critical tools for addressing food security. Here, we evaluate 39 years (1982–2020) of data on hydroclimate, leaf area index, and maize yields to investigate the strength of ENSO teleconnections in southern and East Africa. Teleconnections to precipitation, soil moisture, and leaf area index are generally stronger during ENSO phases that cause drought conditions (El Niño in southern Africa and La Niña in East Africa), with seasonality that aligns well with the maize growing seasons. Within maize growing areas, however, ENSO teleconnections to hydroclimate and vegetation are generally weaker compared to the broader geographic regions, especially in East Africa. There is also little evidence that the magnitude of the ENSO event affects the hydroclimate or vegetation response in these maize regions. Maize yields in Kenya, Malawi, South Africa, and Zimbabwe all correlate significantly with hydroclimate and leaf area index, with South Africa and Zimbabwe showing the strongest and most consistent yield responses to ENSO events. Our results highlight the chain of causality from El Niño and La Niña forcing of regional anomalies in hydroclimate to vegetation health and maize yields in southern and East Africa. The large spread across individual ENSO events, however, underscores the limitations of this climate mode for seasonal climate prediction in the region, and the importance of finding additional sources of skill for improving climate and yield forecasts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.3334 MB)
Save
  • Anderson, W., and Coauthors, 2023: Climate variability and simultaneous breadbasket yield shocks as observed in long-term yield records. Agric. For. Meteor., 331, 109321, https://doi.org/10.1016/j.agrformet.2023.109321.

    • Search Google Scholar
    • Export Citation
  • Anderson, W. B., R. Seager, W. Baethgen, M. Cane, and L. You, 2019: Synchronous crop failures and climate-forced production variability. Sci. Adv., 5, eaaw1976, https://doi.org/10.1126/sciadv.aaw1976.

    • Search Google Scholar
    • Export Citation
  • Anttila-Hughes, J. K., A. S. Jina, and G. C. McCord, 2021: ENSO impacts child undernutrition in the global tropics. Nat. Commun., 12, 5785, https://doi.org/10.1038/s41467-021-26048-7.

    • Search Google Scholar
    • Export Citation
  • Anyamba, A., E. Glennie, and J. Small, 2018: Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens., 10, 1038, https://doi.org/10.3390/rs10071038.

    • Search Google Scholar
    • Export Citation
  • Anyamba, A., C. J. Tucker, and R. Mahoney, 2002: From El Niño to La Niña: Vegetation response patterns over east and southern Africa during the 1997–2000 period. J. Climate, 15, 30963103, https://doi.org/10.1175/1520-0442(2002)015<3096:FENOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashcroft, L., J. Gergis, and D. J. Karoly, 2016: Long-term stationarity of El Niño–Southern Oscillation teleconnections in southeastern Australia. Climate Dyn., 46, 29913006, https://doi.org/10.1007/s00382-015-2746-3.

    • Search Google Scholar
    • Export Citation
  • Backer, D., and T. Billing, 2021: Validating famine early warning systems network projections of food security in Africa, 2009–2020. Global Food Secur., 29, 100510, https://doi.org/10.1016/j.gfs.2021.100510.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Climate Dyn., 53, 72157234, https://doi.org/10.1007/s00382-017-3603-3.

    • Search Google Scholar
    • Export Citation
  • Becker-Reshef, I., B. Barker, A. Whitcraft, P. Oliva, K. Mobley, C. Justice, and R. Sahajpal, 2023: Crop type maps for operational global agricultural monitoring. Sci. Data, 10, 172, https://doi.org/10.1038/s41597-023-02047-9.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Cai, W., and Coauthors, 2020: Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ., 1, 215231, https://doi.org/10.1038/s43017-020-0040-3.

    • Search Google Scholar
    • Export Citation
  • Calderini, D. F., and G. A. Slafer, 1998: Changes in yield and yield stability in wheat during the 20th century. Field Crops Res., 57, 335347, https://doi.org/10.1016/S0378-4290(98)00080-X.

    • Search Google Scholar
    • Export Citation
  • Cao, S., and Coauthors, 2023: Spatiotemporally consistent global dataset of the GIMMS Leaf Area Index (GIMMS LAI4g) from 1982 to 2020. Earth Syst. Sci. Data, 15, 48774899, https://doi.org/10.5194/essd-15-4877-2023.

    • Search Google Scholar
    • Export Citation
  • Choularton, R. J., and P. K. Krishnamurthy, 2019: How accurate is food security early warning? Evaluation of FEWS NET accuracy in Ethiopia. Food Secur., 11, 333344, https://doi.org/10.1007/s12571-019-00909-y.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538547, https://doi.org/10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Evolving land–atmosphere interactions over North America from CMIP5 simulations. J. Climate, 26, 73137327, https://doi.org/10.1175/JCLI-D-12-00454.1.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Search Google Scholar
    • Export Citation
  • Feba, F., K. Ashok, M. Collins, and S. R. Shetye, 2021: Emerging skill in multi-year prediction of the Indian Ocean dipole. Front. Climate, 3, 736759, https://doi.org/10.3389/fclim.2021.736759.

    • Search Google Scholar
    • Export Citation
  • FEWS NET, 2020: El Niño and precipitation. Agroclimatology Fact Sheet Series, Vol. 1, 1 pp., https://fews.net/sites/default/files/2023-03/White%20Paper%20-%20El%20Nino_1.pdf.

  • Food and Agriculture Organization of the United Nations, 2023: FAOSTAT Statistical Database. https://www.fao.org/faostat/en/.

  • Funk, C., and Coauthors, 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 10111027, https://doi.org/10.1175/BAMS-D-17-0233.1.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152726, https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2004: The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dyn., 22, 839855, https://doi.org/10.1007/s00382-004-0420-2.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity. J. Climate, 18, 651665, https://doi.org/10.1175/JCLI-3277.1.

  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152, https://doi.org/10.1002/joc.636.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., W. A. Dorigo, W. Crow, and W. Wagner, 2017: Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 55, 67806792, https://doi.org/10.1109/TGRS.2017.2734070.

    • Search Google Scholar
    • Export Citation
  • Guimarães Nobre, G., S. Muis, T. I. E. Veldkamp, and P. J. Ward, 2019: Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. Disaster Sci., 2, 100022, https://doi.org/10.1016/j.pdisas.2019.100022.

    • Search Google Scholar
    • Export Citation
  • Hazra, A., and Coauthors, 2023: NASA’s NMME-based S2S hydrologic forecast system for food insecurity early warning in southern Africa. J. Hydrol., 617, 129005, https://doi.org/10.1016/j.jhydrol.2022.129005.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, M. C. Wheeler, and C. Funk, 2014: Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys. Res. Lett., 41, 9981004, https://doi.org/10.1002/2013GL058648.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, T. Magadzire, J. Zinke, and G. Husak, 2015: El Niño–Southern Oscillation diversity and southern Africa teleconnections during austral summer. Climate Dyn., 45, 15831599, https://doi.org/10.1007/s00382-014-2414-z.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, J. Zinke, and L. Harrison, 2017: Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean dipole. Climate Dyn., 48, 25292540, https://doi.org/10.1007/s00382-016-3220-6.

    • Search Google Scholar
    • Export Citation
  • Iizumi, T., J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, and T. Yamagata, 2014: Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun., 5, 3712, https://doi.org/10.1038/ncomms4712.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, N. Henderson, and D. E. Lee, 2018: Role of equatorial pacific SST forecast error in the late winter California precipitation forecast for the 2015/16 El Niño. J. Climate, 31, 839852, https://doi.org/10.1175/JCLI-D-17-0145.1.

    • Search Google Scholar
    • Export Citation
  • Jung, H. C., A. Getirana, K. R. Arsenault, S. Kumar, and I. Maigary, 2019: Improving surface soil moisture estimates in West Africa through GRACE data assimilation. J. Hydrol., 575, 192201, https://doi.org/10.1016/j.jhydrol.2019.05.042.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kiflie, K. A., and L. Tao, 2020: Opposite effects of ENSO on the rainfall over the northern and equatorial Great Horn of Africa and possible causes. Adv. Meteor., 2020, 9028523, https://doi.org/10.1155/2020/9028523.

    • Search Google Scholar
    • Export Citation
  • Kogan, F., and W. Guo, 2017: Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens., 38, 161178, https://doi.org/10.1080/01431161.2016.1259679.

    • Search Google Scholar
    • Export Citation
  • Korecha, D., and A. G. Barnston, 2007: Predictability of June–September rainfall in Ethiopia. Mon. Wea. Rev., 135, 628650, https://doi.org/10.1175/MWR3304.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, P. K., R. J. Choularton, and P. Kareiva, 2020: Dealing with uncertainty in famine predictions: How complex events affect food security early warning skill in the Greater Horn of Africa. Global Food Secur., 26, 100374, https://doi.org/10.1016/j.gfs.2020.100374.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, https://doi.org/10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Lenssen, N. J. L., L. Goddard, and S. Mason, 2020: Seasonal forecast skill of ENSO teleconnection maps. Wea. Forecasting, 35, 23872406, https://doi.org/10.1175/WAF-D-19-0235.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. Liu, and J. M. Chen, 2012: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res., 117, 2012JG002084, https://doi.org/10.1029/2012JG002084.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and C. B. Field, 2007: Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett., 2, 014002, https://doi.org/10.1088/1748-9326/2/1/014002.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and C. Tebaldi, 2014: Getting caught with our plants down: The risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett., 9, 074003, https://doi.org/10.1088/1748-9326/9/7/074003.

    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Search Google Scholar
    • Export Citation
  • McNally, A., S. Shukla, K. R. Arsenault, S. Wang, C. D. Peters-Lidard, and J. P. Verdin, 2016: Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf., 48, 96109, https://doi.org/10.1016/j.jag.2016.01.001.

    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590635, https://doi.org/10.1002/2016RG000544.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and J. Kim, 1997: The relationship of the El Niño–Southern Oscillation to African rainfall. Int. J. Climatol., 17, 117135, https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Palmer, P. I., and Coauthors, 2023: Drivers and impacts of eastern African rainfall variability. Nat. Rev. Earth Environ., 4, 254270, https://doi.org/10.1038/s43017-023-00397-x.

    • Search Google Scholar
    • Export Citation
  • Pomposi, C., C. Funk, S. Shukla, L. Harrison, and T. Magadzire, 2018: Distinguishing southern Africa precipitation response by strength of El Niño events and implications for decision-making. Environ. Res. Lett., 13, 074015, https://doi.org/10.1088/1748-9326/aacc4c.

    • Search Google Scholar
    • Export Citation
  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19, 47554771, https://doi.org/10.1175/JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., R. J. Haarsma, E. J. D. Campos, and T. Ambrizzi, 2011: The impacts of inter–El Niño variability on the tropical Atlantic and northeast Brazil climate. J. Climate, 24, 34023422, https://doi.org/10.1175/2011JCLI3983.1.

    • Search Google Scholar
    • Export Citation
  • Ross, K. W., M. E. Brown, J. P. Verdin, and L. W. Underwood, 2009: Review of FEWS NET biophysical monitoring requirements. Environ. Res. Lett., 4, 024009, https://doi.org/10.1088/1748-9326/4/2/024009.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Sazib, N., E. Mladenova, and J. D. Bolten, 2020: Assessing the impact of ENSO on agriculture over Africa using earth observation data. Front. Sustainable Food Syst., 4, 509914, https://doi.org/10.3389/fsufs.2020.509914.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., and Coauthors, 2022: Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett., 17, 014046, https://doi.org/10.1088/1748-9326/ac3bfc.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., S. Hänsel, P. Finger, E. Rustemeier, and M. Ziese, 2022: GPCC full data monthly product version 2022 at 0.25°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst, accessed 9 November 2022, https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_025.

  • Taschetto, A. S., C. C. Ummenhofer, M. F. Stuecker, D. Dommenget, K. Ashok, R. R. Rodrigues, and S.-W. Yeh, 2020: ENSO atmospheric teleconnections. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 309–335, https://doi.org/10.1002/9781119548164.ch14.

  • Ubilava, D., and M. Abdolrahimi, 2019: The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environ. Res. Lett., 14, 054008, https://doi.org/10.1088/1748-9326/ab0cd0.

    • Search Google Scholar
    • Export Citation
  • Vashisht, A., B. Zaitchik, and A. Gnanadesikan, 2021: ENSO teleconnection to eastern African summer rainfall in global climate models: Role of the tropical easterly jet. J. Climate, 34, 293312, https://doi.org/10.1175/JCLI-D-20-0222.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. Newman, D. S. Battisti, and S.-I. Shin, 2022: The role of seasonality and the ENSO mode in Central and East Pacific ENSO growth and evolution. J. Climate, 35, 31953209, https://doi.org/10.1175/JCLI-D-21-0599.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 462 462 20
Full Text Views 155 155 16
PDF Downloads 106 106 10