Inter–Intraseasonality of Meteorological Drivers of Chorabari Glacier, Central Himalaya: Implications for Mass Fluctuations and Associated Hazards

Jairam Singh Yadav aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India

Search for other papers by Jairam Singh Yadav in
Current site
Google Scholar
PubMed
Close
,
Sameer K. Tiwari aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

Search for other papers by Sameer K. Tiwari in
Current site
Google Scholar
PubMed
Close
,
Rakesh Bhambri aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

Search for other papers by Rakesh Bhambri in
Current site
Google Scholar
PubMed
Close
,
Kalachand Sain aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

Search for other papers by Kalachand Sain in
Current site
Google Scholar
PubMed
Close
,
Pawan Patidar aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

Search for other papers by Pawan Patidar in
Current site
Google Scholar
PubMed
Close
, and
Ayushi Baiswar aWadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

Search for other papers by Ayushi Baiswar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-altitude meteorological data are scarce in the Himalayan region, particularly for glacierized catchments. In-depth knowledge of meteorological variables is crucial to describe numerous cryospheric processes and associated hazards. The present study comprehensively assesses time series data (2013–16) of meteorological parameters in the Chorabari Glacier catchment (CGC) using an automatic weather station (∼4270 m MSL). Results revealed that average near-surface air temperature varied seasonally, ranging from 6.4°C in the summer monsoon (June–September) to −6.3°C in the winter season (December–February). The minimum temperature (Tmin) remained positive throughout the monsoon seasons in the higher elevations (∼5050 m MSL), indicating the melting of glaciers and their reduced mass. The daily relative humidity in different seasons fluctuated from 39% to 90%, whereas the highest seasonal average (∼63%) was observed in the monsoon season. The average wind speed was high (∼1.7 m s−1) during winter and dropped to 1.1 m s−1 in the monsoon season. The average daily influx of solar radiation ranged from 19 to 374 W m−2, with the highest value recorded during the premonsoon (March–May ∼ 212 W m−2) and the lowest during the winter (∼149 W m−2) season. The daily outflux solar radiation varied from 18 to 186 W m−2, with the maximum value in premonsoon (∼145 W m−2) and the minimum value in the monsoon season (∼30 W m−2). The mean zero-degree isotherm was found above the equilibrium line altitude (ELA ∼ 5120 m MSL) during the monsoon season, indicating a considerable mass depletion of the Chorabari Glacier. The abnormal variations in climatic variables on 16–17 June 2013 were signs of the Kedarnath disaster.

Significance Statement

The main objective of this study is to understand the variability of meteorological drivers at daily, monthly, and seasonal scales and how these changes may impact glacier mass and downstream hydrology. Our research revealed considerable variations in maximum temperature throughout the year and positive minimum temperature at higher elevations during monsoon months, which significantly control the glacier mass changes. Meteorological variables showing cyclic behavior and indicators of the “monsoon lowering phenomenon” are important in determining the timing and intensity of the seasonal shift. Investigation of abnormal changes in the climatic drivers in the 2013 Kedarnath disaster provides valuable insight into the glacier-related hazards and draws attention to decision-makers to create robust strategies to monitor the dynamic response of Himalayan glaciers.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jairam Singh Yadav, jai.au08@gmail.com

Abstract

High-altitude meteorological data are scarce in the Himalayan region, particularly for glacierized catchments. In-depth knowledge of meteorological variables is crucial to describe numerous cryospheric processes and associated hazards. The present study comprehensively assesses time series data (2013–16) of meteorological parameters in the Chorabari Glacier catchment (CGC) using an automatic weather station (∼4270 m MSL). Results revealed that average near-surface air temperature varied seasonally, ranging from 6.4°C in the summer monsoon (June–September) to −6.3°C in the winter season (December–February). The minimum temperature (Tmin) remained positive throughout the monsoon seasons in the higher elevations (∼5050 m MSL), indicating the melting of glaciers and their reduced mass. The daily relative humidity in different seasons fluctuated from 39% to 90%, whereas the highest seasonal average (∼63%) was observed in the monsoon season. The average wind speed was high (∼1.7 m s−1) during winter and dropped to 1.1 m s−1 in the monsoon season. The average daily influx of solar radiation ranged from 19 to 374 W m−2, with the highest value recorded during the premonsoon (March–May ∼ 212 W m−2) and the lowest during the winter (∼149 W m−2) season. The daily outflux solar radiation varied from 18 to 186 W m−2, with the maximum value in premonsoon (∼145 W m−2) and the minimum value in the monsoon season (∼30 W m−2). The mean zero-degree isotherm was found above the equilibrium line altitude (ELA ∼ 5120 m MSL) during the monsoon season, indicating a considerable mass depletion of the Chorabari Glacier. The abnormal variations in climatic variables on 16–17 June 2013 were signs of the Kedarnath disaster.

Significance Statement

The main objective of this study is to understand the variability of meteorological drivers at daily, monthly, and seasonal scales and how these changes may impact glacier mass and downstream hydrology. Our research revealed considerable variations in maximum temperature throughout the year and positive minimum temperature at higher elevations during monsoon months, which significantly control the glacier mass changes. Meteorological variables showing cyclic behavior and indicators of the “monsoon lowering phenomenon” are important in determining the timing and intensity of the seasonal shift. Investigation of abnormal changes in the climatic drivers in the 2013 Kedarnath disaster provides valuable insight into the glacier-related hazards and draws attention to decision-makers to create robust strategies to monitor the dynamic response of Himalayan glaciers.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jairam Singh Yadav, jai.au08@gmail.com
Save
  • Abdi, H., 2010: Coefficient of variation. Encyclopedia of Research Design, N. J. Salkind, Ed., Sage Publications, 1–5.

  • Adamu, M., X. Qiu, G. Shi, I. K. Nooni, D. Wang, X. Zhu, D. F. T. Hagan, and K. T. C. Lim Kam Sian, 2019: High spatial resolution simulation of sunshine duration over the complex terrain of Ghana. Sensors, 19, 1743, https://doi.org/10.3390/s19071743.

    • Search Google Scholar
    • Export Citation
  • Andreassen, L. M., F. Paul, A. Kääb, and J. E. Hausberg, 2008: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere, 2, 131145, https://doi.org/10.5194/tc-2-131-2008.

    • Search Google Scholar
    • Export Citation
  • Archer, D., 2004: Hydrological implications of spatial and altitudinal variation in temperature in the upper Indus basin. Hydrol. Res., 35, 209222, https://doi.org/10.2166/nh.2004.0015.

    • Search Google Scholar
    • Export Citation
  • Ayala, A., F. Pellicciotti, N. Peleg, and P. Burlando, 2017: Melt and surface sublimation across a glacier in a dry environment: Distributed energy-balance modelling of Juncal Norte Glacier, Chile. J. Glaciol., 63, 803822, https://doi.org/10.1017/jog.2017.46.

    • Search Google Scholar
    • Export Citation
  • Azam, M. F., P. Wagnon, C. Vincent, A. L. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal, 2014: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 8, 21952217, https://doi.org/10.5194/tc-8-2195-2014.

    • Search Google Scholar
    • Export Citation
  • Azam, M. F., and Coauthors, 2021: Glaciohydrology of the Himalaya-Karakoram. Science, 373, eabf3668, https://doi.org/10.1126/science.abf3668.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 229–283, https://doi.org.10.1007/978-1-935704-25-6_9.

  • Barman, N., A. Borgohain, S. S. Kundu, and N. V. P. Kiran Kumar, 2021: Seasonal variation of mountain-valley wind circulation and surface layer parameters over the mountainous terrain of the northeastern region of India. Theor. Appl. Climatol., 143, 15011512, https://doi.org/10.1007/s00704-020-03491-y.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, https://doi.org/10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2012: Recent advances in mountain climate research. Theor. Appl. Climatol., 110, 549553, https://doi.org/10.1007/s00704-012-0695-x.

    • Search Google Scholar
    • Export Citation
  • Benn, D. I., and D. J. A. Evans, 2010: Glaciers and Glaciation. Hodder-Arnold Press, 802 pp.

  • Bhambri, R., and T. Bolch, 2009: Glacier mapping: A review with special reference to the Indian Himalayas. Prog. Phys. Geogr., 33, 672704, https://doi.org/10.1177/0309133309348112.

    • Search Google Scholar
    • Export Citation
  • Bhambri, R., T. Bolch, and R. K. Chaujar, 2012: Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr. Sci., 102, 489494, https://doi.org/10.5167/uzh-59630.

    • Search Google Scholar
    • Export Citation
  • Bhambri, R., M. Mehta, D. P. Dobhal, A. K. Gupta, B. Pratap, K. Kesarwani, and A. Verma, 2016: Devastation in the Kedarnath (Mandakini) valley, Garhwal Himalaya, during 16–17 June 2013: A remote sensing and ground-based assessment. Nat. Hazards, 80, 18011822, https://doi.org/10.1007/s11069-015-2033-y.

    • Search Google Scholar
    • Export Citation
  • Bhambri, R., S. Schmidt, P. Chand, M. Nüsser, U. Haritashya, K. Sain, S. K. Tiwari, and J. S. Yadav, 2023: Heterogeneity in glacier thinning and slowdown of ice movement in the Garhwal Himalaya, India. Sci. Total Environ., 875, 162625, https://doi.org/10.1016/j.scitotenv.2023.162625.

    • Search Google Scholar
    • Export Citation
  • Bhutiyani, M. R., V. S. Kale, and N. J. Pawar, 2007: Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Climatic Change, 85, 159177, https://doi.org/10.1007/s10584-006-9196-1.

    • Search Google Scholar
    • Export Citation
  • Bhutiyani, M. R., V. S. Kale, and N. J. Pawar, 2010: Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol., 30, 535548, https://doi.org/10.1002/joc.1920.

    • Search Google Scholar
    • Export Citation
  • Biemans, H., and Coauthors, 2019: Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustainability, 2, 594601, https://doi.org/10.1038/s41893-019-0305-3.

    • Search Google Scholar
    • Export Citation
  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, https://doi.org/10.1126/science.1215828.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M., L. Bertolani, and G. Tartari, 2002: Meteorological observations in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull. Glacier Res., 19, 111.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Burbank, D. W., A. E. Blythe, J. Putkonen, B. Pratt-Sitaula, E. Gabet, M. Oskin, A. Barros, and T. P. Ojha, 2003: Decoupling of erosion and precipitation in the Himalayas. Nature, 426, 652655, https://doi.org/10.1038/nature02187.

    • Search Google Scholar
    • Export Citation
  • Carturan, L., F. Cazorzi, F. De Blasi, and G. Dalla Fontana, 2015: Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): Effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling. Cryosphere, 9, 11291146, https://doi.org/10.5194/tc-9-1129-2015.

    • Search Google Scholar
    • Export Citation
  • Changnon, D., M. Sandstrom, and C. Schaffer, 2003: Relating changes in agricultural practices to increasing dew points in extreme Chicago heat waves. Climate Res., 24, 243254, https://doi.org/10.3354/cr024243.

    • Search Google Scholar
    • Export Citation
  • Conway, H., A. Gades, and C. F. Raymond, 1996: Albedo of dirty snow during conditions of melt. Water Resour. Res., 32, 17131718, https://doi.org/10.1029/96WR00712.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and W. S. B. Paterson, 2010: The Physics of Glaciers. Academic Press, 704 pp.

  • Dimri, A. P., 2013: Interannual variability of Indian winter monsoon over the western Himalayas. Global Planet. Change, 106, 3950, https://doi.org/10.1016/j.gloplacha.2013.03.002.

    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., and S. K. Dash, 2010: Winter temperature and precipitation trends in the Siachen Glacier. Curr. Sci., 98, 16201625.

  • Dobhal, D. P., and M. Mehta, 2010: Surface morphology, elevation changes and terminus retreat of Dokriani Glacier, Garhwal Himalaya: Implication for climate change. Himalayan Geol., 31, 7178.

    • Search Google Scholar
    • Export Citation
  • Dobhal, D. P., A. K. Gupta, M. Mehta, and D. D. Khandelwal, 2013a: Kedarnath disaster: Facts and plausible causes. Curr. Sci., 105, 171174.

    • Search Google Scholar
    • Export Citation
  • Dobhal, D. P., M. Mehta, and D. Srivastava, 2013b: Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. J. Glaciol., 59, 961971, https://doi.org/10.3189/2013JoG12J180.

    • Search Google Scholar
    • Export Citation
  • Dobhal, D. P., B. Pratap, R. Bhambri, and M. Mehta, 2021: Mass balance and morphological changes of Dokriani Glacier (1992–2013), Garhwal Himalaya, India. Quat. Sci. Adv., 4, 100033, https://doi.org/10.1016/j.qsa.2021.100033.

    • Search Google Scholar
    • Export Citation
  • Favier, V., P. Wagnon, and P. Ribstein, 2004: Glaciers of the outer and inner tropics: A different behaviour but a common response to climatic forcing. Geophys. Res. Lett., 31, L16403, https://doi.org/10.1029/2004GL020654.

    • Search Google Scholar
    • Export Citation
  • Favier, V., C. Agosta, C. Genthon, L. Arnaud, A. Trouvillez, and H. Gallée, 2011: Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. J. Geophys. Res., 116, F03017, https://doi.org/10.1029/2010JF001939.

    • Search Google Scholar
    • Export Citation
  • Forsythe, N., H. J. Fowler, X. F. Li, S. Blenkinsop, and D. Pritchard, 2017: Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Climate Change, 7, 664670, https://doi.org/10.1038/nclimate3361.

    • Search Google Scholar
    • Export Citation
  • Gardelle, J., E. Berthier, Y. Arnaud, and A. Kääb, 2013: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7, 12631286, https://doi.org/10.5194/tc-7-1263-2013.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and M. J. Sharp, 2010: A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res., 115, F01009, https://doi.org/10.1029/2009JF001444.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, https://doi.org/10.1126/science.1234532.

    • Search Google Scholar
    • Export Citation
  • Garg, P. K., J. S. Yadav, S. K. Rai, and A. Shukla, 2022: Mass balance and morphological evolution of the Dokriani Glacier, central Himalaya, India during 1999–2014. Geosci. Front., 13, 101290, https://doi.org/10.1016/j.gsf.2021.101290.

    • Search Google Scholar
    • Export Citation
  • Georges, C., and G. Kaser, 2002: Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. J. Geophys. Res., 107, 4475, https://doi.org/10.1029/2002JD002503.

    • Search Google Scholar
    • Export Citation
  • Giesen, R. H., L. M. Andreassen, M. R. van den Broeke, and J. Oerlemans, 2009: Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway. Cryosphere, 3, 5774, https://doi.org/10.5194/tc-3-57-2009.

    • Search Google Scholar
    • Export Citation
  • Gokhale, A. A., D. P. Dobhal, and H. C. Nainwal, 2021: Source characterization of suspended sediments transported from debris-covered Chorabari Glacier in Central Himalaya, India. Arabian J. Geosci., 14, 2339, https://doi.org/10.1007/s12517-021-08474-5.

    • Search Google Scholar
    • Export Citation
  • Greuell, W., W. H. Knap, and P. C. Smeets, 1997: Elevational changes in meteorological variables along a midlatitude glacier during summer. J. Geophys. Res., 102, 25 94125 954, https://doi.org/10.1029/97JD02083.

    • Search Google Scholar
    • Export Citation
  • Gusain, H. S., M. Kala, A. Ganju, V. D. Mishra, and V. D. Snehmani, 2015: Observations of snow–meteorological parameters in Gangotri Glacier region. Curr. Sci., 109, 21162120, https://doi.org/10.18520/cs/v109/i11/2116-2120.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hardy, D. R., M. Vuille, and R. S. Bradley, 2003: Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. J. Geophys. Res., 108, 4693, https://doi.org/10.1029/2003JD003623.

    • Search Google Scholar
    • Export Citation
  • Hewitt, K., 2014: Surge-type glaciers. Glaciers of the Karakoram Himalaya, K. Hewitt, Ed., Springer, 219–244.

  • Heynen, M., E. Miles, S. Ragettli, P. Buri, W. W. Immerzeel, and F. Pellicciotti, 2016: Air temperature variability in a high-elevation Himalayan catchment. Ann. Glaciol., 57, 212222, https://doi.org/10.3189/2016AoG71A076.

    • Search Google Scholar
    • Export Citation
  • Higuchi, K., Y. Ageta, T. Yasunari, and J. Inoue, 1982: Characteristics of precipitation during the monsoon season in high-mountain areas of the Nepal Himalaya. Hydrological Aspects of Alpine High Mountain Areas Proc. Exeter Symp., Nepal, IAHS, 21–30, https://www.chikyu.ac.jp/yasunari/yasunari.bak/list/pdf/Higuchi.etal.IAHS.Pub.no138.1982.pdf.

  • Hock, R., 2005: Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr., 29, 362391, https://doi.org/10.1191/0309133305pp453ra.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., F. Pellicciotti, and A. B. Shrestha, 2012: Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev., 32, 3038, https://doi.org/10.1659/MRD-JOURNAL-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens, 2015: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19, 46734687, https://doi.org/10.5194/hess-19-4673-2015.

    • Search Google Scholar
    • Export Citation
  • Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud, 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, https://doi.org/10.1038/nature11324.

    • Search Google Scholar
    • Export Citation
  • Kayastha, R. B., Y. Ageta, and K. Fujita, 2006: Use of positive degree-day methods for calculating snow and ice melting and discharge in glacierized basins in the Langtang valley, central Nepal. Climate Hydrology in Mountain Areas, John Wiley and Sons, 5–14, https://doi.org/10.1002/0470858249.ch2.

  • Kesarwani, K., D. P. Dobhal, A. Durgapal, and M. Mehta, 2015: High altitude meteorology and cloud cover conditions: A study from the Chorabari Glacier catchment, central Himalaya, India. Himalayan Geol., 36, 134142.

    • Search Google Scholar
    • Export Citation
  • Klok, E. J., M. Nolan, and M. R. Van Den Broeke, 2005: Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. J. Glaciol., 51, 451461, https://doi.org/10.3189/172756505781829241.

    • Search Google Scholar
    • Export Citation
  • Kumar, O., A. L. Ramanathan, J. Bakke, B. S. Kotlia, J. P. Shrivastava, P. Kumar, R. Sharma, and P. Kumar, 2021: Role of Indian summer monsoon and westerlies on glacier variability in the Himalaya and East Africa during late quaternary: Review and new data. Earth-Sci. Rev., 212, 103431, https://doi.org/10.1016/j.earscirev.2020.103431.

    • Search Google Scholar
    • Export Citation
  • Kumar, R., S. Singh, S. Singh Randhawa, K. K. Singh, and J. Chand Rana, 2014: Temperature trend analysis in the glacier region of Naradu Valley, Himachal Himalaya, India. C. R. Geosci., 346, 213222, https://doi.org/10.1016/j.crte.2014.09.001.

    • Search Google Scholar
    • Export Citation
  • Lu, M., S. Yang, J. Wang, Y. Wu, and X. Jia, 2021: Response of regional Asian summer monsoons to the effect of reduced surface albedo in different Tibetan Plateau domains in idealized model experiments. J. Climate, 34, 70237036, https://doi.org/10.1175/JCLI-D-20-0500.1.

    • Search Google Scholar
    • Export Citation
  • Mandal, A., and Coauthors, 2020: Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. J. Glaciol., 66, 727741, https://doi.org/10.1017/jog.2020.42.

    • Search Google Scholar
    • Export Citation
  • Marshall, S., and R. J. Oglesby, 1994: An improved snow hydrology for GCMs. Part 1: Snow cover fraction, albedo, grain size, and age. Climate Dyn., 10, 2138, https://doi.org/10.1007/s003820050033.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., and K. Miller, 2020: Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains. Cryosphere, 14, 32493267, https://doi.org/10.5194/tc-14-3249-2020.

    • Search Google Scholar
    • Export Citation
  • Matuszko, D., 2012: Influence of cloudiness on sunshine duration. Int. J. Climatol., 32, 15271536, https://doi.org/10.1002/joc.2370.

  • Matuszko, D., and S. Weglarczyk, 2015: Relationship between sunshine duration and air temperature and contemporary global warming. Int. J. Climatol., 35, 36403653, https://doi.org/10.1002/joc.4238.

    • Search Google Scholar
    • Export Citation
  • Matzarakis, A. P., and V. D. Katsoulis, 2006: Sunshine duration hours over the Greek region. Theor. Appl. Climatol., 83, 107120, https://doi.org/10.1007/s00704-005-0158-8.

    • Search Google Scholar
    • Export Citation
  • Mehta, M., Z. Majeed, D. P. Dobhal, and P. Srivastava, 2012: Geomorphological evidences of post-LGM glacial advancements in the Himalaya: A study from Chorabari Glacier, Garhwal Himalaya, India. J. Earth Syst. Sci., 121, 149163, https://doi.org/10.1007/s12040-012-0155-0.

    • Search Google Scholar
    • Export Citation
  • Mehta, M., D. P. Dobhal, K. Kesarwani, B. Pratap, A. Kumar, and A. Verma, 2014: Monitoring of glacier changes and response time in Chorabari Glacier, central Himalaya, Garhwal, India. Curr. Sci., 107, 281289.

    • Search Google Scholar
    • Export Citation
  • Ming, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu, 2009: Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res., 92, 114123, https://doi.org/10.1016/j.atmosres.2008.09.007.

    • Search Google Scholar
    • Export Citation
  • Misra, A., and Coauthors, 2020: Topographic and climatic influence on seasonal snow cover: Implications for the hydrology of ungauged Himalayan basins, India. J. Hydrol., 585, 124716, https://doi.org/10.1016/j.jhydrol.2020.124716.

    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Search Google Scholar
    • Export Citation
  • Naegeli, K., and M. Huss, 2017: Sensitivity of mountain glacier mass balance to changes in bare-ice albedo. Ann. Glaciol., 58, 119129, https://doi.org/10.1017/aog.2017.25.

    • Search Google Scholar
    • Export Citation
  • Niven, E. B., and C. V. Deutsch, 2012: Calculating a robust correlation coefficient and quantifying its uncertainty. Comput. Geosci., 40, 19, https://doi.org/10.1016/j.cageo.2011.06.021.

    • Search Google Scholar
    • Export Citation
  • Nüsser, M., and S. Schmidt, 2021: Glacier changes on the Nanga Parbat 1856–2020: A multi-source retrospective analysis. Sci. Total Environ., 785, 147321, https://doi.org/10.1016/j.scitotenv.2021.147321.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 2010: The Microclimate of Valley Glaciers. Igitur Publishing, 138 pp., https://webspace.science.uu.nl/∼oerle102/Microclimate-Oerlemans-2010.pdf.

  • Oerlemans, J., and B. Grisogono, 2002: Glacier winds and parameterisation of the related surface heat fluxes. Tellus, 54A, 440452, https://doi.org/10.3402/tellusa.v54i5.12164.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., and E. J. Klok, 2004: Effect of summer snowfall on glacier mass balance. Ann. Glaciol., 38, 97100, https://doi.org/10.3189/172756404781815158.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C. J. P. P. Smeets, H. F. Vugts, and J. De Wolde, 1999: Glacio-meteorological investigations on Vatnajokull, Iceland, summer 1996: An overview. Bound.-Layer Meteor., 92, 324, https://doi.org/10.1023/A:1001856114941.

    • Search Google Scholar
    • Export Citation
  • Ohno, H., T. Ohata, and K. Higuchi, 1992: The influence of humidity on the ablation of continental-type glaciers. Ann. Glaciol., 16, 107114, https://doi.org/10.3189/1992AoG16-1-107-114.

    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. von Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, https://doi.org/10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Pang, H., S. Hou, S. Kaspari, and P. A. Mayewski, 2014: Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere, 8, 289301, https://doi.org/10.5194/tc-8-289-2014.

    • Search Google Scholar
    • Export Citation
  • Pellicciotti, F., T. Raschle, T. Huerlimann, M. Carenzo, and P. Burlando, 2011: Transmission of solar radiation through clouds on melting glaciers: A comparison of parameterizations and their impact on melt modelling. J. Glaciol., 57, 367381, https://doi.org/10.3189/002214311796406013.

    • Search Google Scholar
    • Export Citation
  • Petersen, L., and F. Pellicciotti, 2011: Spatial and temporal variability of air temperature on a melting glacier: Atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. J. Geophys. Res., 116, D23109, https://doi.org/10.1029/2011JD015842.

    • Search Google Scholar
    • Export Citation
  • Pratap, B., D. P. Dobhal, M. Mehta, and R. Bhambri, 2015: Influence of debris cover and altitude on glacier surface melting: A case study on Dokriani Glacier, central Himalaya, India. Ann. Glaciol., 56, 916, https://doi.org/10.3189/2015AoG70A971.

    • Search Google Scholar
    • Export Citation
  • Pratap, B., P. Sharma, L. K. Patel, A. T. Singh, S. N. Oulkar, and M. Thamban, 2023: Differential surface melting of a debris-covered glacier and its geomorphological control—A case study from Batal Glacier, western Himalaya. Geomorphology, 431, 108686, https://doi.org/10.1016/j.geomorph.2023.108686.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., 2019: Asia’s shrinking glaciers protect large populations from drought stress. Nature, 569, 649654, https://doi.org/10.1038/s41586-019-1240-1.

    • Search Google Scholar
    • Export Citation
  • Qu, B., and Coauthors, 2014: The decreasing albedo of the Zhadang Glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys., 14, 11 11711 128, https://doi.org/10.5194/acp-14-11117-2014.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., 2009: Changes in the atmospheric circulation as indicator of climate change. Climate Change: Observed Impacts on Planet Earth, 1st ed., Elsevier, 145–164.

  • Reijmer, C. H., and J. Oerlemans, 2002: Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica. J. Geophys. Res., 107, 4759, https://doi.org/10.1029/2000JD000110.

    • Search Google Scholar
    • Export Citation
  • Sain, K., and Coauthors, 2021: A perspective on Rishiganga-Dhauliganga flash flood in the Nanda Devi biosphere reserve, Garhwal Himalaya, India. J. Geol. Soc. India, 97, 335338, https://doi.org/10.1007/s12594-021-1691-5.

    • Search Google Scholar
    • Export Citation
  • Santos, C., and C. Dias, 2021: Note on the coefficient of variation properties 1 Nota sobre as propriedades do coeficiente de variação (in Portuguese). Brazilian Electron. J. Math., 2, 101111, https://doi.org/10.14393/BEJOM-v2-n4-2021-58062.

    • Search Google Scholar
    • Export Citation
  • Scherler, D., B. Bookhagen, and M. R. Strecker, 2011: Spatially variable response of Himalayan Glaciers to climate change affected by debris cover. Nat. Geosci., 4, 156159, https://doi.org/10.1038/ngeo1068.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., and WMO, 1982: Methods of correction for systematic error in point precipitation measurement for operational use. WMO Operational Hydrology Rep. 21, 91 pp., https://community.wmo.int/en/bookstore/methods-correction-systematic-error-point-precipitation-measurement-operational-use.

  • Shea, J. M., <