X-Band Radar and Surface-Based Observations of Cold-Season Precipitation in Western Colorado’s Complex Terrain

Stella Heflin aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Stella Heflin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2036-3741
,
Mimi Abel bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Mimi Abel in
Current site
Google Scholar
PubMed
Close
,
Sounak Biswas bNOAA/Physical Sciences Laboratory, Boulder, Colorado
cDepartment of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Sounak Biswas in
Current site
Google Scholar
PubMed
Close
,
Annareli Morales dWeld County Department of Public Health and Environment, Greeley, Colorado

Search for other papers by Annareli Morales in
Current site
Google Scholar
PubMed
Close
,
Rob Cifelli bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Rob Cifelli in
Current site
Google Scholar
PubMed
Close
,
Joseph Sedlar eCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
fNOAA/Global Monitoring Laboratory, Boulder, Colorado

Search for other papers by Joseph Sedlar in
Current site
Google Scholar
PubMed
Close
,
Daniel Feldman gLawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Daniel Feldman in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar cDepartment of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
, and
Patrick Kennedy cDepartment of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Patrick Kennedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hydrologic processes associated with intermountain cold-season precipitation in the Upper Colorado River basin have important impacts on avalanche forecasting and water resource management. However, traditional weather radar networks struggle with observations in this complex terrain. Data collected during the Study of Precipitation, the Lower Atmosphere, and the Surface for Hydrometeorology (SPLASH) and its sister campaign, Surface Atmosphere Integrated Field Laboratory (SAIL) in the East River watershed of western Colorado, are used to examine a multistorm period from 23 December 2021 to 1 January 2022 that contributed 35% of the total winter precipitation in this watershed. Dual-polarization X-band radar and disdrometer measurements show ∼30-mm differences in precipitation amount at two sites in proximity over four distinct storm events within the period. Wind patterns, synoptic forcings, microphysical characteristics of precipitation, and surface meteorology are analyzed to explain the observed spatial variability of cold-season precipitation in complex mountainous terrain. Analysis shows that differences over time within this event are mainly accounted for by synoptic forcings, such as frontal passages; differences between sites are accounted for by the impact of variations in local wind patterns on precipitation microphysics. Patterns of surface precipitation intensity are compared and found to be correlated with X-band radar signatures; a relationship between a strong dendritic growth stage and intense low-density surface precipitation is reinforced by this study. This relationship demonstrates the importance of particle growth mechanisms on surface snowfall patterns in high-altitude complex terrain, underscoring the importance of realistic microphysical parameterizations.

Significance Statement

The amount and density of snowpack from western Colorado winter storms have significant impacts on water resources in the Upper Colorado River basin. Snowpack characteristics are affected by small-scale differences in how snow forms in the atmosphere. These differences are hard to study in the complex terrain of the Rockies, but data from the SPLASH and SAIL field campaigns allows us to investigate how snow crystal formation and mountain-driven wind patterns affect snow near the surface. Our study finds that snow crystal growth varies over small space and time scales and is likely controlled by the terrain beneath a given location and resultant local wind patterns. These results imply that predicting snowpack in the Rockies requires properly representing local wind patterns and crystal growth processes in models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stella Heflin, smheflin@uw.edu

Abstract

Hydrologic processes associated with intermountain cold-season precipitation in the Upper Colorado River basin have important impacts on avalanche forecasting and water resource management. However, traditional weather radar networks struggle with observations in this complex terrain. Data collected during the Study of Precipitation, the Lower Atmosphere, and the Surface for Hydrometeorology (SPLASH) and its sister campaign, Surface Atmosphere Integrated Field Laboratory (SAIL) in the East River watershed of western Colorado, are used to examine a multistorm period from 23 December 2021 to 1 January 2022 that contributed 35% of the total winter precipitation in this watershed. Dual-polarization X-band radar and disdrometer measurements show ∼30-mm differences in precipitation amount at two sites in proximity over four distinct storm events within the period. Wind patterns, synoptic forcings, microphysical characteristics of precipitation, and surface meteorology are analyzed to explain the observed spatial variability of cold-season precipitation in complex mountainous terrain. Analysis shows that differences over time within this event are mainly accounted for by synoptic forcings, such as frontal passages; differences between sites are accounted for by the impact of variations in local wind patterns on precipitation microphysics. Patterns of surface precipitation intensity are compared and found to be correlated with X-band radar signatures; a relationship between a strong dendritic growth stage and intense low-density surface precipitation is reinforced by this study. This relationship demonstrates the importance of particle growth mechanisms on surface snowfall patterns in high-altitude complex terrain, underscoring the importance of realistic microphysical parameterizations.

Significance Statement

The amount and density of snowpack from western Colorado winter storms have significant impacts on water resources in the Upper Colorado River basin. Snowpack characteristics are affected by small-scale differences in how snow forms in the atmosphere. These differences are hard to study in the complex terrain of the Rockies, but data from the SPLASH and SAIL field campaigns allows us to investigate how snow crystal formation and mountain-driven wind patterns affect snow near the surface. Our study finds that snow crystal growth varies over small space and time scales and is likely controlled by the terrain beneath a given location and resultant local wind patterns. These results imply that predicting snowpack in the Rockies requires properly representing local wind patterns and crystal growth processes in models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stella Heflin, smheflin@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.8620 MB)
Save
  • Abel, M. R., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Search Google Scholar
    • Export Citation
  • Aikins, J., K. Friedrich, B. Geerts, and B. Pokharel, 2016: Role of a cross-barrier jet and turbulence on winter orographic snowfall. Mon. Wea. Rev., 144, 32773300, https://doi.org/10.1175/MWR-D-16-0025.1.

    • Search Google Scholar
    • Export Citation
  • Alcott, T. I., and W. J. Steenburgh, 2010: Snow-to-liquid ratio variability and prediction at a high-elevation site in Utah’s Wasatch Mountains. Wea. Forecasting, 25, 323337, https://doi.org/10.1175/2009WAF2222311.1.

    • Search Google Scholar
    • Export Citation
  • Allabakash, S., S. Lim, V. Chandrasekar, K. H. Min, J. Choi, and B. Jang, 2019: X-band dual-polarization radar observations of snow growth processes of a severe winter storm: Case of 12 December 2013 in South Korea. J. Atmos. Oceanic Technol., 36, 12171235, https://doi.org/10.1175/JTECH-D-18-0076.1.

    • Search Google Scholar
    • Export Citation
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • ARM, 2021a: X-Band Precipitation Radar (XPRECIPRADAR). ARM Mobile Facility (GUC); Supplemental Facility 2 (S2), Accessed 15 June 2023, https://www.arm.gov/capabilities/instruments/xprecipradar.

  • ARM, 2021b: Gridded Sonde VAP Product (GRIDDEDSONDE). ARM Mobile Facility (GUC) Gunnison, CO; AMF2 (main site for SAIL) (M1), accessed 15 June 2023, http://dx.doi.org/10.5439/1350631.

  • Armijo, L., 1969: A Theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, http://doi.org/10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., and V. Chandrasekar, 2015: A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Oceanic Technol., 32, 2247, https://doi.org/10.1175/JTECH-D-14-00097.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., V. Chandrasekar, and F. Junyent, 2010: Signal processing system for the CASA integrated project I radars. J. Atmos. Oceanic Technol., 27, 14401460, https://doi.org/10.1175/2010JTECHA1415.1.

    • Search Google Scholar
    • Export Citation
  • Bonner, H. M., E. Smyth, M. S. Raleigh, and E. E. Small, 2022: A meteorology and snow data set from adjacent forested and meadow sites at Crested Butte, CO, USA. Water Resour. Res., 58, e2022WR033006, https://doi.org/10.1029/2022WR033006.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., P. C. Kennedy, G.-J. Huang, C. Kleinkort, M. Thurai, and B. M. Notaroš, 2017: Dual-polarized radar and surface observations of a winter graupel shower with negative Zdr column. J. Appl. Meteor. Climatol., 56, 455470, https://doi.org/10.1175/JAMC-D-16-0197.1.

    • Search Google Scholar
    • Export Citation
  • Bureau of Reclamation, 2024: Near-term Colorado River operation: Final supplemental environmental impact statement. U.S. Department of the Interior Regions 7 and 8, 1 pp.

  • Bytheway, J. L., W. R. Currier, M. R. Abel, K. Mahoney, and R. Cifelli, 2024: Evaluation of wintertime precipitation estimates and forecasts in the mountains of Colorado. J. Hydrometeor., 25, 565579, https://doi.org/10.1175/JHM-D-23-0158.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2014: Finescale orographic precipitation variability and gap-filling radar potential in Little Cottonwood Canyon, Utah. Wea. Forecasting, 29, 912935, https://doi.org/10.1175/WAF-D-13-00129.1.

    • Search Google Scholar
    • Export Citation
  • Capozzi, V., C. Annella, M. Montopoli, E. Adirosi, G. Fusco, and G. Budillon, 2021: Influence of wind-induced effects on laser disdrometer measurements: Analysis and compensation strategies. Remote Sens., 13, 3028, https://doi.org/10.3390/rs13153028.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, https://doi.org/10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. M. Beauchamp, and R. Bechini, 2023: Data quality, data science, and engineering of weather radars. Introduction to Dual Polarization Weather Radar: Fundamentals, Applications, and Networks, 1st ed. Cambridge University Press, 294–344.

  • CoCoRAHS, 2021: Crested Butte 6.2 N daily precipitation report (CO-GN-18) 12/24/21. Community Collaborative Rain, Hail, and Snow Network, accessed 28 June 2023.

  • de Boer, G., and Coauthors, 2023: Supporting advancement in weather and water prediction in the Upper Colorado River Basin: The SPLASH campaign. Bull. Amer. Meteor. Soc., 104, E1853E1874, https://doi.org/10.1175/BAMS-D-22-0147.1.

    • Search Google Scholar
    • Export Citation
  • DeVoir, G., 2002: A quick review of snow microphysics and its relation to heavy snow forecasting. NWS CTP Winter Weather Workshop, State College, PA, NWS, 3–15, https://www.slideserve.com/jaron/a-quick-review-of-snow-microphysics-and-its-relation-to-heavy-snow-forecasting.

  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Atmos. Sci., 14, 95114, https://doi.org/10.1175/1520-0469(1957)014<0095:PITVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler spectra of weather signals. Doppler Radar and Weather Observations, Academic Press, 87–121.

  • Dzambo, A. M., and D. D. Turner, 2016: Characterizing relative humidity with respect to ice in midlatitude cirrus clouds as a function of atmospheric state. J. Geophys. Res. Atmos., 121, 12 25312 269, https://doi.org/10.1002/2015JD024643.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., H. Morrison, D. Mitchell, A. Gettelman, and E. Erfani, 2017: Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Climate, 30, 609629, https://doi.org/10.1175/JCLI-D-16-0050.1.

    • Search Google Scholar
    • Export Citation
  • Feldman, D., and Coauthors, 2021: Surface Atmosphere Integrated Field Laboratory (SAIL) Science Plan. Rep. DOE/SC-ARM-21-004, 83 pp., https://www.arm.gov/publications/programdocs/doe-sc-arm-21-004.pdf.

  • Feldman, D. R., and Coauthors, 2023: The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign. Bull. Amer. Meteor. Soc., 104, E2192E2222, https://doi.org/10.1175/BAMS-D-22-0049.1.

    • Search Google Scholar
    • Export Citation
  • Frasier, S. J., F. Kabeche, J. Figueras i Ventura, H. Al-Sakka, P. Tabary, J. Beck, and O. Bousquet, 2013: In-place estimation of wet radome attenuation at X band. J. Atmos. Oceanic Technol., 30, 917928, https://doi.org/10.1175/JTECH-D-12-00148.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, https://doi.org/10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1945: Thermodynamic properties of moist air. Amer. Soc. Heat. Vent. Eng. Trans., 51, 125157.

  • Gonzalez, S., J. Bech, M. Udina, B. Codina, A. Paci, and L. Trapero, 2019: Decoupling between precipitation processes and mountain wave induced circulations observed with a vertically pointing K-band Doppler radar. Remote Sens., 11, 1034, https://doi.org/10.3390/rs11091034.

    • Search Google Scholar
    • Export Citation
  • González, S., J. Bech, A. Garcia-Benadí, M. Udina, B. Codina, L. Trapero, A. Paci, and J.-F. Georgis, 2021: Vertical structure and microphysical observations of winter precipitation in an inner valley during the Cerdanya-2017 field campaign. Atmos. Res., 264, 105826, https://doi.org/10.1016/j.atmosres.2021.105826.

    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, https://doi.org/10.1175/WAF-D-14-00056.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2019: Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos., 124, 12 52312 552, https://doi.org/10.1029/2019JD031205.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python Programming Language. J. Open Res. Software, 4, 25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1979: Doppler radar study of a warm frontal region. J. Atmos. Sci., 36, 20932107, https://doi.org/10.1175/1520-0469(1979)036<2093:DRSOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., J. D. Locatelli, and P. V. Hobbs, 1976: Dynamics and cloud microphysies of the rainbands in an occluded frontal system. J. Atmos. Sci., 33, 19211936, https://doi.org/10.1175/1520-0469(1976)033<1921:DACMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., and Coauthors, 2020: Six priorities for investment in snow research and product development. Bull. Amer. Meteor. Soc., 101, E2025E2029, https://doi.org/10.1175/BAMS-D-20-0218.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, https://doi.org/10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2021: Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: Current climate and pseudo global warming future climate. Climate Dyn., 57, 21912215, https://doi.org/10.1007/s00382-021-05805-w.

    • Search Google Scholar
    • Export Citation
  • Ishizaka, M., H. Motoyoshi, S. Yamaguchi, S. Nakai, T. Shiina, and K. Muramoto, 2016: Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications. Cryosphere, 10, 28312845, https://doi.org/10.5194/tc-10-2831-2016.

    • Search Google Scholar
    • Export Citation
  • James, T., A. Evans, E. Madly, and K. Kelly, 2014: The economic importance of the Colorado River to the basin region. L William Seidman Research Institute Final Rep., 54 pp., https://businessforwater.org/wp-content/uploads/2016/12/PTF-Final-121814.pdf.

  • Judson, A., and N. Doesken, 2000: Density of freshly fallen snow in the central Rocky Mountains. Bull. Amer. Meteor. Soc., 81, 15771588, https://doi.org/10.1175/1520-0477(2000)081<1577:DOFFSI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., R. M. Rauber, B. F. Jewett, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, https://doi.org/10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. R. Abel, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra Barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California. Mon. Wea. Rev., 141, 20152036, https://doi.org/10.1175/MWR-D-12-00277.1.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., and D. Moisseev, 2020: Long-term statistics of riming in nonconvective clouds derived from ground-based Doppler cloud radar observations. J. Atmos. Sci., 77, 34953508, https://doi.org/10.1175/JAS-D-20-0007.1.

    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and N. M. Kohn, 1978: Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar. J. Appl. Meteor., 17, 669676, https://doi.org/10.1175/1520-0450(1978)017<0669:PHRITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lim, S., R. Cifelli, V. Chandrasekar, and S. Y. Matrosov, 2013a: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the hydrometeorology testbed. J. Atmos. Oceanic Technol., 30, 21082120, https://doi.org/10.1175/JTECH-D-12-00123.1.

    • Search Google Scholar
    • Export Citation
  • Lim, S., D. Moisseev, V. Chandrasekar, and D.-R. Lee, 2013b: Classification and quantification of snow based on spatial variability of radar reflectivity. J. Meteor. Soc. Japan, 91, 763774, https://doi.org/10.2151/jmsj.2013-603.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lukas, J., and B. Harding, 2020: Current understanding of Colorado River basin climate and hydrology. Colorado River Basin Climate and Hydrology: State of the Science, Western Water Assessment, University of Colorado Boulder, 42–81.

  • Lukas, J., and E. Payton, 2020: Introduction. Colorado River Basin Climate and Hydrology: State of the Science, Western Water Assessment, University of Colorado Boulder, 31–41.

  • Lundquist, J., M. R. Abel, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, https://doi.org/10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mancini, A., J. L. Salazar, R. M. Lebrón, and B. L. Cheong, 2018: A novel instrument for real-time measurement of attenuation of weather radar radome including its outer surface. Part I: The concept. J. Atmos. Oceanic Technol., 35, 953973, https://doi.org/10.1175/JTECH-D-17-0083.1.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173, https://doi.org/10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 28422870, https://doi.org/10.1175/MWR-D-14-00124.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, https://doi.org/10.1175/JAS3554.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J., 1998: CEDRIC: Custom editing and display of reduced information in Cartesian space. Tech. Rep., 130 pp., https://github.com/ai2es/hradar2updraft/blob/main/aux_docs/cedric.2009sep_doc.pdf.

  • Minder, J. R., D. R. Durran, and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, https://doi.org/10.1175/JAS-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Mott, R., V. Vionnet, and T. Grünewald, 2018: The seasonal snow cover dynamics: Review on wind-driven coupling processes. Front. Earth Sci., 6, 197, https://doi.org/10.3389/feart.2018.00197.

    • Search Google Scholar
    • Export Citation
  • National Water and Climate Center, 2022: Butte SNOTEL site number 380. USDA Air and Water Database Public Reports, accessed 24 June 2023, https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=380.

  • Neiman, P. J., M. R. Abel, B. J. Moore, F. M. Ralph, and E. M. Sukovich, 2013: Sierra Barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, https://doi.org/10.1175/MWR-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. Wolde, and A. Korolev, 2019: Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar. Atmos. Meas. Tech., 12, 58975911, https://doi.org/10.5194/amt-12-5897-2019.

    • Search Google Scholar
    • Export Citation
  • NOAA JetStream, 2023: Radar images: Velocity. NOAA, accessed 30 June 2023, https://www.noaa.gov/jetstream/velocity.

  • NOAA Virtual Lab, 2022: Dual-pol precipitation flipchart – Forecaster references. NOAA Office of the Chief Learning Officer, accessed 20 June 2023, https://vlab.noaa.gov/web/oclo/dualpol.

  • OTT Hydromet, 2019: Technical data – OTT Parsivel Laser Weather Sensor. Accessed 15 June 2023, https://www.otthydromet.com/.

  • OTT Hydromet, 2024: Operating instructions present weather sensor OTT Parsivel. OTT Instruction Manual, 52 pp., https://www.ott.com/download/operating-instructions-present-weather-sensor-ott-parsivel2-without-screen-heating-1/.

  • Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403424, https://doi.org/10.1175/JAMC-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: MODIS Atmosphere L2 Cloud Product (06_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed 7 January 2024, https://doi.org/10.5067/MODIS/MYD06_L2.061.

  • Pokharel, B., B. Geerts, X. Chu, and P. Bergmaier, 2017: Profiling radar observations and numerical simulations of a downslope wind storm and rotor on the lee of the Medicine Bow Mountains in Wyoming. Atmosphere, 8, 39, https://doi.org/10.3390/atmos8020039.

    • Search Google Scholar
    • Export Citation
  • Ramelli, F., and Coauthors, 2021: Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud. Atmos. Chem. Phys., 21, 66816706, https://doi.org/10.5194/acp-21-6681-2021.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2023: CONUS404: The NCAR–USGS 4-km long-term regional hydroclimate reanalysis over the CONUS. Bull. Amer. Meteor. Soc., 104, E1382E1408, https://doi.org/10.1175/BAMS-D-21-0326.1.

    • Search Google Scholar
    • Export Citation
  • Rea, D., R. M. Rauber, H. Hu, S. A. Tessendorf, S. W. Nesbitt, B. F. Jewett, and T. J. Zaremba, 2023: The contribution of subtropical moisture within an atmospheric river on moisture flux, cloud structure, and precipitation over the Salmon River Mountains of Idaho using moisture tracers. J. Geophys. Res. Atmos., 128, e2022JD037727, https://doi.org/10.1029/2022JD037727.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas Jr., 2003: Improving snowfall forecasting by diagnosing snow density. Wea. Forecasting, 18, 264287, https://doi.org/10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth Heinemann, 290 pp.

  • Rudisill, W. J., A. N. Flores, H. P. Marshall, E. Siirila-Woodburn, D. R. Feldman, A. M. Rhoades, Z. Xu, and A. Morales, 2024: Cold-season precipitation sensitivity to microphysical parameterizations: Hydrologic evaluations leveraging snow lidar datasets. J. Hydrometeor., 25, 143160, https://doi.org/10.1175/JHM-D-22-0217.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and W. J. Steenburgh, 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett., 13, 257261, https://doi.org/10.1002/asl.392.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, https://doi.org/10.1175/JAMC-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Y. Chen, Y. Bi, D. Lyu, H. Chen, and S. Duan, 2022: Snowfall microphysics characterized by PARSIVEL disdrometer observations in Beijing from 2020 to 2022. Remote Sens., 14, 6025, https://doi.org/10.3390/rs14236025.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J. R. Lanzante, and C. L. Meyer, 2005: Radiosonde daytime biases and late-20th century warming. Science, 309, 15561559, https://doi.org/10.1126/science.1115640.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, B. Saltzman, Ed., Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

  • Strauss, L., S. Serafin, S. Haimov, and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Roy. Meteor. Soc., 141, 32073225, https://doi.org/10.1002/qj.2604.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Tiira, J., D. N. Moisseev, A. von Lerber, D. Ori, A. Tokay, L. F. Bliven, and W. Petersen, 2016: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland. Atmos. Meas. Tech., 9, 48254841, https://doi.org/10.5194/amt-9-4825-2016.

    • Search Google Scholar
    • Export Citation
  • Troyan, D., 2013: Interpolated sounding value-added product. Rep. DOE/SC-ARM/TR-124, 18 pp., https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-124.pdf?id=96.

  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Wasserstein, M. L., and W. J. Steenburgh, 2024: Diverse characteristics of extreme orographic snowfall events in Little Cottonwood Canyon, Utah. Mon. Wea. Rev., 15, 945–966, https://doi.org/10.1175/MWR-D-23-0206.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., E. R. Siirila-Woodburn, A. M. Rhoades, and D. Feldman, 2023: Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: A case study in the Upper Colorado River basin. Hydrol. Earth Syst. Sci., 27, 17711789, https://doi.org/10.5194/hess-27-1771-2023.

    • Search Google Scholar
    • Export Citation
  • Yin, M., and C. Yuan, 2022: Exploring the environmental conditions of snow particles using spaceborne triple-frequency radar measurements over ocean. Remote Sens., 14, 5512, https://doi.org/10.3390/rs14215512.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, R. A. Houze Jr., and S. Tanelli, 2019: Vertical structure and microphysical characteristics of frontal systems passing over a three-dimensional coastal mountain range. J. Atmos. Sci., 76, 15211546, https://doi.org/10.1175/JAS-D-18-0279.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 383 383 142
Full Text Views 159 159 77
PDF Downloads 184 184 73