Comparative Analysis of the Latest Global Oceanic Precipitation Estimates from GPM V07 and GPCP V3.2 Products

Ali Behrangi aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7594-8793
,
Yang Song aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Yang Song in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
, and
Robert F. Adler cESSIC, University of Maryland, College Park, College Park, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellites bring opportunities to quantify precipitation amount and distribution over the globe, critical to understanding how the Earth system works. The amount and spatial distribution of oceanic precipitation from the latest versions (V07 and the previous version) of the Global Precipitation Measurement (GPM) Core Observatory instruments and selected members of the constellation of passive microwave sensors are quantified and compared with other products such as the Global Precipitation Climatology Project (GPCP V3.2); the Merged CloudSat, TRMM, and GPM (MCTG) climatology; and ERA5. Results show that GPM V07 products have a higher precipitation rate than the previous version, except for the radar-only product. Within ∼65°S–65°N, covered by all of the instruments, this increase ranges from about 9% for the combined radar–radiometer product to about 16% for radiometer-only products. While GPM precipitation products still show lower mean precipitation rate than MCTG (except over the tropics and Arctic Ocean), the V07 products (except radar-only) are generally more consistent with MCTG and GPCP V3.2 than V05. Over the tropics (25°S–25°N), passive microwave sounders show the highest precipitation rate among all of the precipitation products studied and the highest increase (∼19%) compared to their previous version. Precipitation products are least consistent in midlatitude oceans in the Southern Hemisphere, displaying the largest spread in mean precipitation rate and location of latitudinal peak precipitation. Precipitation products tend to show larger spread over regions with low and high values of sea surface temperature and total precipitable water. The analysis highlights major discrepancies among the products and areas for future research.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Behrangi, behrangi@arizona.edu

Abstract

Satellites bring opportunities to quantify precipitation amount and distribution over the globe, critical to understanding how the Earth system works. The amount and spatial distribution of oceanic precipitation from the latest versions (V07 and the previous version) of the Global Precipitation Measurement (GPM) Core Observatory instruments and selected members of the constellation of passive microwave sensors are quantified and compared with other products such as the Global Precipitation Climatology Project (GPCP V3.2); the Merged CloudSat, TRMM, and GPM (MCTG) climatology; and ERA5. Results show that GPM V07 products have a higher precipitation rate than the previous version, except for the radar-only product. Within ∼65°S–65°N, covered by all of the instruments, this increase ranges from about 9% for the combined radar–radiometer product to about 16% for radiometer-only products. While GPM precipitation products still show lower mean precipitation rate than MCTG (except over the tropics and Arctic Ocean), the V07 products (except radar-only) are generally more consistent with MCTG and GPCP V3.2 than V05. Over the tropics (25°S–25°N), passive microwave sounders show the highest precipitation rate among all of the precipitation products studied and the highest increase (∼19%) compared to their previous version. Precipitation products are least consistent in midlatitude oceans in the Southern Hemisphere, displaying the largest spread in mean precipitation rate and location of latitudinal peak precipitation. Precipitation products tend to show larger spread over regions with low and high values of sea surface temperature and total precipitable water. The analysis highlights major discrepancies among the products and areas for future research.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Behrangi, behrangi@arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.7196 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., J.-J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year tropical rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281293, https://doi.org/10.2151/jmsj.87A.281.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, https://doi.org/10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, M. Sapiano, J.-J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., E. Dutra, S. Munier, J.-C. Calvet, J. Munoz-Sabater, P. de Rosnay, and G. Balsamo, 2018: ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci., 22, 35153532, https://doi.org/10.5194/hess-22-3515-2018.

    • Search Google Scholar
    • Export Citation
  • Arabzadeh, A., and A. Behrangi, 2021: Investigating various products of IMERG for precipitation retrieval over surfaces with and without snow and ice cover. Remote Sens., 13, 2726, https://doi.org/10.3390/rs13142726.

    • Search Google Scholar
    • Export Citation
  • Arabzadeh, A., M. R. Ehsani, B. Guan, S. Heflin, and A. Behrangi, 2020: Global intercomparison of atmospheric rivers precipitation in remote sensing and reanalysis products. J. Geophys. Res. Atmos., 125, e2020JD033021, https://doi.org/10.1029/2020JD033021.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Y. Wen, 2017: On the spatial and temporal sampling errors of remotely sensed precipitation products. Remote Sens., 9, 1127, https://doi.org/10.3390/rs9111127.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and M. Richardson, 2018: Observed high-latitude precipitation amount and pattern and CMIP5 model projections. Remote Sens., 10, 1583, https://doi.org/10.3390/rs10101583.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Y. Song, 2020: A new estimate for oceanic precipitation amount and distribution using complementary precipitation observations from space and comparison with GPCP. Environ. Res. Lett., 15, 124042, https://doi.org/10.1088/1748-9326/abc6d1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012a: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, 2012JD017979, https://doi.org/10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., T. Kubar, and B. Lambrigtsen, 2012b: Phenomenological description of tropical clouds using CloudSat cloud classification. Mon. Wea. Rev., 140, 32353249, https://doi.org/10.1175/MWR-D-11-00247.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and M. Lebsock, 2014: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, https://doi.org/10.1175/JCLI-D-13-00679.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., A. Gardner, J. T. Reager, J. B. Fisher, D. Yang, G. J. Huffman, and R. F. Adler, 2018: Using GRACE to estimate snowfall accumulation and assess gauge undercatch corrections in high latitudes. J. Climate, 31, 86898704, https://doi.org/10.1175/JCLI-D-18-0163.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., A. Singh, Y. Song, and M. Panahi, 2019: Assessing gauge undercatch correction in Arctic basins in light of GRACE observations. Geophys. Res. Lett., 46, 11 35811 366, https://doi.org/10.1029/2019GL084221.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., A. S. Gardner, and D. N. Wiese, 2020: Comparative analysis of snowfall accumulation over Antarctica in light of ice discharge and gravity observations from space. Environ. Res. Lett., 15, 104010, https://doi.org/10.1088/1748-9326/ab9926.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641, https://doi.org/10.1175/1520-0469(1989)046<2621:CEOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., R. F. Adler, G. J. Huffman, E. J. Nelkin, and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 18431857, https://doi.org/10.1175/2009JAMC2147.1.

    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., G. J. Huffman, E. J. Nelkin, and J. Tan, 2021: Comparison of monthly IMERG precipitation estimates with PACRAIN atoll observations. J. Hydrometeor., 22, 17451753, https://doi.org/10.1175/JHM-D-20-0202.1.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, https://doi.org/10.1109/JSTARS.2015.2403303.

    • Search Google Scholar
    • Export Citation
  • Feng, X., K. Haines, and E. de Boisséson, 2018: Coupling of surface air and sea surface temperatures in the CERA-20C reanalysis. Quart. J. Roy. Meteor. Soc., 144, 195207, https://doi.org/10.1002/qj.3194.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-l., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 343–353, https://doi.org/10.1007/978-3-030-24568-9_19.

  • Huffman, G. J., R. F. Adler, A. Behrangi, D. T. Bolvin, E. J. Nelkin, G. Gu, and M. R. Ehsani, 2023b: The new version 3.2 Global Precipitation Climatology Project (GPCP) monthly and daily precipitation products. J. Climate, 36, 76357655, https://doi.org/10.1175/JCLI-D-23-0123.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 2021: GPM DPR Precipitation Profile L2A 1.5 hours 5 km V07. Goddard Earth Sciences Data and Information Services Center, accessed 3 January 2023, https://doi.org/10.5067/GPM/DPR/GPM/2A/07.

  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Kummerow, C., 2022: GPM GMI (GPROF) Climate-based Radiometer Precipitation Profiling L2A 1.5 hours 4 km × 4 km V07. Goddard Earth Sciences Data and Information Services Center, accessed 3 January 2023, https://doi.org/10.5067/GPM/GMI/GPROFCLIM/2A/07.

  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and S. Shen, 1988: On the dynamics of intraseasonal oscillations and ENSO. J. Atmos. Sci., 45, 17811797, https://doi.org/10.1175/1520-0469(1988)045<1781:OTDOIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Wen, L. Liao, D. Wolff, R. Meneghini, and T. Schuur, 2023: Joint collaboration on comparing NOAA’s ground-based weather radar and NASA–JAXA’s spaceborne radar. Bull. Amer. Meteor. Soc., 104, E1435E1451, https://doi.org/10.1175/BAMS-D-22-0127.1.

    • Search Google Scholar
    • Export Citation
  • Liu, S., C. Grassotti, Q. Liu, Y. K. Lee, R. Honeyager, Y. Zhou, and M. Fang, 2020: The NOAA Microwave Integrated Retrieval System (MiRS): Validation of precipitation from multiple polar-orbiting satellites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 30193031, https://doi.org/10.1109/JSTARS.2020.3000348.

    • Search Google Scholar
    • Export Citation
  • Olson, W., 2022: GPM DPR and GMI Combined Precipitation L2B 1.5 hours 5 km V07. Goddard Earth Sciences Data and Information Services Center, accessed 3 January 2023, https://doi.org/10.5067/GPM/DPRGMI/CMB/2B/07.

  • Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 141–152.

  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Search Google Scholar
    • Export Citation
  • Song, Y., A. Behrangi, and E. Blanchard-Wrigglesworth, 2020: Assessment of satellite and reanalysis cold season snowfall estimates over Arctic sea ice. Geophys. Res. Lett., 47, e2020GL088970, https://doi.org/10.1029/2020GL088970.

    • Search Google Scholar
    • Export Citation
  • Song, Y., P. D. Broxton, M. R. Ehsani, and A. Behrangi, 2021: Assessment of snowfall accumulation from satellite and reanalysis products using SNOTEL observations in Alaska. Remote Sens., 13, 2922, https://doi.org/10.3390/rs13152922.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. Mehta, 1997: Characteristics of the TOVS pathfinder path a dataset. Bull. Amer. Meteor. Soc., 78, 14491472, https://doi.org/10.1175/1520-0477(1997)078<1449:COTTPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, https://doi.org/10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, https://doi.org/10.1029/93JD00872.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., R. F. Adler, G. J. Huffman, and D. Bolvin, 2014: An updated TRMM composite climatology of tropical rainfall and its validation. J. Climate, 27, 273284, https://doi.org/10.1175/JCLI-D-13-00331.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and P. Huang, 2023: Improvements in the relationship between tropical precipitation and sea surface temperature from CMIP5 to CMIP6. Climate Dyn., 60, 33193337, https://doi.org/10.1007/s00382-022-06519-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 433 433 28
Full Text Views 261 261 15
PDF Downloads 211 211 16