Does the Operation of a Reservoir Alter Its Interactions with the Atmosphere? Investigating the Role of Advective Fluxes on Energy and Hydrological Balances of the Romaine-2 Subarctic Hydropower Reservoir

Adrien Pierre aDepartment of Civil and Water Engineering, Université Laval, Quebec, Canada
bCentrEau–Water Research Centre, Université Laval, Quebec, Canada

Search for other papers by Adrien Pierre in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8625-9125
,
Daniel F. Nadeau aDepartment of Civil and Water Engineering, Université Laval, Quebec, Canada
bCentrEau–Water Research Centre, Université Laval, Quebec, Canada

Search for other papers by Daniel F. Nadeau in
Current site
Google Scholar
PubMed
Close
,
Antoine Thiboult aDepartment of Civil and Water Engineering, Université Laval, Quebec, Canada
bCentrEau–Water Research Centre, Université Laval, Quebec, Canada

Search for other papers by Antoine Thiboult in
Current site
Google Scholar
PubMed
Close
,
Alain N. Rousseau cInstitut National de la Recherche Scientifique–Centre Eau Terre Environnement, Quebec, Canada

Search for other papers by Alain N. Rousseau in
Current site
Google Scholar
PubMed
Close
,
François Anctil aDepartment of Civil and Water Engineering, Université Laval, Quebec, Canada
bCentrEau–Water Research Centre, Université Laval, Quebec, Canada

Search for other papers by François Anctil in
Current site
Google Scholar
PubMed
Close
,
Charles P. Deblois dAqua Consult, Montréal, Quebec, Canada

Search for other papers by Charles P. Deblois in
Current site
Google Scholar
PubMed
Close
,
Maud Demarty dAqua Consult, Montréal, Quebec, Canada

Search for other papers by Maud Demarty in
Current site
Google Scholar
PubMed
Close
,
Pierre-Erik Isabelle aDepartment of Civil and Water Engineering, Université Laval, Quebec, Canada
bCentrEau–Water Research Centre, Université Laval, Quebec, Canada

Search for other papers by Pierre-Erik Isabelle in
Current site
Google Scholar
PubMed
Close
, and
Alain Tremblay eHydro-Québec, Montréal, Quebec, Canada

Search for other papers by Alain Tremblay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The hydrological processes of cascading hydroelectric reservoirs differ from those of lakes, due to the importance of the inflows and outflows that vary with energy demand. These heat and water advection terms are rarely considered in water body energy balance analyses even though reservoirs are common man-made structures, especially in North America, and thus may affect the regional climate. This study provides a comprehensive assessment of the water and energy balance of the 85-km2 Romaine-2 northern reservoir (50.69°N, 63.24°W), mean depth of 44 m, highlighting the significant contribution of the advection heat fluxes. The water balance input was primarily controlled by upstream (turbine) inflows (77.6%), while lateral (natural) inflows and direct precipitation represented 21.2% and 1.2%, respectively. As for the reservoir’s heat budget, the net advection of heat accounted on average for 25.0% of the input, of which net radiation was the largest component (73.3%). After accounting for the absence of energy balance closure, latent heat and sensible heat fluxes represented 73.2% and 25.1% of total energy output from the reservoir, respectively. The thermal regime was influenced by the hydrological flow conditions, which were regulated by reservoir management. This played a major role in the evolution of the thermocline and the temperature of the epilimnion, and ultimately, in the dynamics of the turbulent heat fluxes. This study suggests that the heat advection term represents a large fraction of the heat budget of northern reservoirs and should be properly considered.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adrien Pierre, Adrien.pierre.1@ulaval.ca

Abstract

The hydrological processes of cascading hydroelectric reservoirs differ from those of lakes, due to the importance of the inflows and outflows that vary with energy demand. These heat and water advection terms are rarely considered in water body energy balance analyses even though reservoirs are common man-made structures, especially in North America, and thus may affect the regional climate. This study provides a comprehensive assessment of the water and energy balance of the 85-km2 Romaine-2 northern reservoir (50.69°N, 63.24°W), mean depth of 44 m, highlighting the significant contribution of the advection heat fluxes. The water balance input was primarily controlled by upstream (turbine) inflows (77.6%), while lateral (natural) inflows and direct precipitation represented 21.2% and 1.2%, respectively. As for the reservoir’s heat budget, the net advection of heat accounted on average for 25.0% of the input, of which net radiation was the largest component (73.3%). After accounting for the absence of energy balance closure, latent heat and sensible heat fluxes represented 73.2% and 25.1% of total energy output from the reservoir, respectively. The thermal regime was influenced by the hydrological flow conditions, which were regulated by reservoir management. This played a major role in the evolution of the thermocline and the temperature of the epilimnion, and ultimately, in the dynamics of the turbulent heat fluxes. This study suggests that the heat advection term represents a large fraction of the heat budget of northern reservoirs and should be properly considered.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adrien Pierre, Adrien.pierre.1@ulaval.ca

Supplementary Materials

    • Supplemental Materials (PDF 0.4834 MB)
Save
  • Almeida, M. C., and Coauthors, 2022: Modeling reservoir surface temperatures for regional and global climate models: A multi-model study on the inflow and level variation effects. Geosci. Model Dev., 15, 173197, https://doi.org/10.5194/gmd-15-173-2022.

    • Search Google Scholar
    • Export Citation
  • Bashir, A., M. A. Shehzad, I. Hussain, M. I. A. Rehmani, and S. H. Bhatti, 2019: Reservoir inflow prediction by ensembling wavelet and bootstrap techniques to multiple linear regression model. Water Resour. Manage., 33, 51215136, https://doi.org/10.1007/s11269-019-02418-1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Search Google Scholar
    • Export Citation
  • Birge, E. A., 1897: Plankton Studies on Lake Mendota: The Crustacea of the Plankton, July, 1894–Dec., 1896. II. Academic Press, 451 pp.

  • Blanken, P. D., and Coauthors, 2000: Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour. Res., 36, 10691077, https://doi.org/10.1029/1999WR900338.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., C. Spence, N. Hedstrom, and J. D. Lenters, 2011: Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res., 37, 707716, https://doi.org/10.1016/j.jglr.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Bolsenga, S. J., 1975: Estimating energy budget components to determine Lake Huron evaporation. Water Resour. Res., 11, 661666, https://doi.org/10.1029/WR011i005p00661.

    • Search Google Scholar
    • Export Citation
  • Bouin, M. N., and Coauthors, 2012: Using scintillometry to estimate sensible heat fluxes over water: First insights. Bound.-Layer Meteor., 143, 451480, https://doi.org/10.1007/s10546-012-9707-8.

    • Search Google Scholar
    • Export Citation
  • Çalışkan, A., and Ş. Elçi, 2009: Effects of selective withdrawal on hydrodynamics of a stratified reservoir. Water Resour. Manage., 23, 12571273, https://doi.org/10.1007/s11269-008-9325-x.

    • Search Google Scholar
    • Export Citation
  • Cheng, B., F. Xie, P. Lu, P. Huo, and M. Leppäranta, 2021: The role of lake heat flux in the growth and melting of ice. Adv. Polar Sci., 32, 364373, https;//doi.org/10.13679/j.advps.2021.0051.

    • Search Google Scholar
    • Export Citation
  • Denfeld, B. A., H. M. Baulch, P. A. del Giorgio, S. E. Hampton, and J. Karlsson, 2018: A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnol. Oceanogr. Lett., 3, 117131, https://doi.org/10.1002/lol2.10079.

    • Search Google Scholar
    • Export Citation
  • DeWalle, D. R., and A. Rango, 2008: Principles of Snow Hydrology. Cambridge University Press, 410 pp.

  • Dirnberger, J. M., and J. Weinberger, 2005: Influences of lake level changes on reservoir water clarity in Allatoona Lake, Georgia. Lake Reservoir Manage., 21, 2429, https://doi.org/10.1080/07438140509354409.

    • Search Google Scholar
    • Export Citation
  • Elo, P., 2007: The energy balance and vertical thermal structure of two small boreal lakes in summer. Boreal Environ. Res., 12, 585600.

    • Search Google Scholar
    • Export Citation
  • Finkelstein, P. L., and P. F. Sims, 2001: Sampling error in eddy correlation flux measurements. J. Geophys. Res., 106, 35033509, https://doi.org/10.1029/2000JD900731.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, https://doi.org/10.1890/06-0922.1.

  • George, J., L. Janaki, and J. P. Gomathy, 2019: Prediction of daily reservoir inflow using atmospheric predictors. Sustainable Water Resour. Manage., 5, 17451754, https://doi.org/10.1007/s40899-019-00323-4.

    • Search Google Scholar
    • Export Citation
  • Han, J.-C., and L. Wright, 2022: Analytical Heat Transfer. 2nd ed. CRC Press, 595 pp.

  • Harvey, R., L. Lye, A. Khan, and R. Paterson, 2011: The influence of air temperature on water temperature and the concentration of dissolved oxygen in Newfoundland Rivers. Can. Water Resour. J., 36, 171192, https://doi.org/10.4296/cwrj3602849.

    • Search Google Scholar
    • Export Citation
  • Heiskanen, J. J., and Coauthors, 2015: Effects of water clarity on lake stratification and lake-atmosphere heat exchange. J. Geophys. Res. Atmos., 120, 74127428, https://doi.org/10.1002/2014JD022938.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, G. E., and Y. H. Edmondson, 1957: A Treatise on Limnology: Introduction to Lake Biology and the Limnoplankton. J. Wiley, 3734 pp.

  • Hydro-Québec, 2007: Vue d’Ensemble et Description des Aménagments. Complexe de la Romaine: Étude d’Impact sur l’Environnement, Vol. 1, Hydro-Québec, 314 pp., https://www.hydroquebec.com/data/romaine/pdf/ei_volume01.pdf.

  • Jammet, M., P. Crill, S. Dengel, and T. Friborg, 2015: Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. J. Geophys. Res. Biogeosci., 120, 22892305, https://doi.org/10.1002/2015JG003137.

    • Search Google Scholar
    • Export Citation
  • Juday, C., 1940: The annual energy budget of an inland lake. Ecology, 21, 438450, https://doi.org/10.2307/1930283.

  • Kallel, H., A. Thiboult, M. D. Mackay, D. F. Nadeau, and F. Anctil, 2024: Modeling heat and water exchanges between the atmosphere and an 85-km2 dimictic subarctic reservoir using the 1D Canadian Small Lake Model. J. Hydrometeor., https://doi.org/10.1175/JHM-D-22-0132.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kirillin, G., and Coauthors, 2012: Physics of seasonally ice-covered lakes: A review. Aquat. Sci., 74, 659682, https://doi.org/10.1007/s00027-012-0279-y.

    • Search Google Scholar
    • Export Citation
  • Koenings, J. P., and J. A. Edmundson, 1991: Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity. Limnol. Oceanogr., 36, 91105, https://doi.org/10.4319/lo.1991.36.1.0091.

    • Search Google Scholar
    • Export Citation
  • Leach, J. A., B. T. Neilson, C. A. Buahin, R. D. Moore, and H. Laudon, 2021: Lake Outflow and hillslope lateral inflows dictate thermal regimes of forested streams draining small lakes. Water Resour. Res., 57, e2020WR028136, https://doi.org/10.1029/2020WR028136.

    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., E. Lindgren, and K. Shirasawa, 2016: The heat budget of Lake Kilpisjärvi in the Arctic tundra. Hydrol. Res., 48, 969980, https://doi.org/10.2166/nh.2016.171.

    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., E. Lindgren, L. Wen, and G. Kirillin, 2019: Ice cover decay and heat balance in Lake Kilpisjärvi in Arctic tundra: Ice decay in Lake Kilpisjärvi. J. Limnol., 78, 163175, https://doi.org/10.4081/jlimnol.2019.1879.

    • Search Google Scholar
    • Export Citation
  • Long, Y., H. Wang, C. Jiang, and S. Ling, 2019: Seasonal inflow forecasts using gridded precipitation and soil moisture information: Implications for reservoir operation. Water Resour. Manage., 33, 37433757, https://doi.org/10.1007/s11269-019-02330-8.

    • Search Google Scholar
    • Export Citation
  • MacIntyre, S., J. R. Romero, G. M. Silsbe, and B. M. Emery, 2014: Stratification and horizontal exchange in Lake Victoria, East Africa. Limnol. Oceanogr., 59, 18051838, https://doi.org/10.4319/lo.2014.59.6.1805.

    • Search Google Scholar
    • Export Citation
  • MacKay, M. D., 2012: A process-oriented small lake scheme for coupled climate modeling applications. J. Hydrometeor., 13, 19111924, https://doi.org/10.1175/JHM-D-11-0116.1.

    • Search Google Scholar
    • Export Citation
  • MacKay, M. D., and Coauthors, 2009: Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr., 54, 23152329, https://doi.org/10.4319/lo.2009.54.6_part_2.2315.

    • Search Google Scholar
    • Export Citation
  • Mahabbati, A., J. Beringer, M. Leopold, I. McHugh, J. Cleverly, P. Isaac, and A. Izady, 2021: A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers. Geosci. Instrum. Methods Data Syst., 10, 123140, https://doi.org/10.5194/gi-10-123-2021.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher, 2013: A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteor., 169, 122135, https://doi.org/10.1016/j.agrformet.2012.09.006.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Coauthors, 2018: Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrol. Processes, 32, 3950, https://doi.org/10.1002/hyp.11397.

    • Search Google Scholar
    • Export Citation
  • Metzger, J., M. Nied, U. Corsmeier, J. Kleffmann, and C. Kottmeier, 2018: Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates. Hydrol. Earth Syst. Sci., 22, 11351155, https://doi.org/10.5194/hess-22-1135-2018.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., T. S. Hristov, J. B. Edson, and C. A. Friehe, 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694, https://doi.org/10.1175/2008JTECHO547.1.

    • Search Google Scholar
    • Export Citation
  • Momii, K., and Y. Ito, 2008: Heat budget estimates for Lake Ikeda, Japan. J. Hydrol., 361, 362370, https://doi.org/10.1016/j.jhydrol.2008.08.004.

    • Search Google Scholar
    • Export Citation
  • Moreno-Ostos, E., R. Marcé, J. Ordóñez, J. Dolz, and J. Armengol, 2008: Hydraulic management drives heat budgets and temperature trends in a Mediterranean reservoir. Int. Rev. Hydrobiol., 93, 131147, https://doi.org/10.1002/iroh.200710965.

    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and H. S. Wheater, 2015: On inclusion of water resource management in Earth system models—Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrol. Earth Syst. Sci., 19, 6390, https://doi.org/10.5194/hess-19-63-2015.

    • Search Google Scholar
    • Export Citation
  • Nordbo, A., S. Launiainen, I. Mammarella, M. Lepparanta, J. Huotari, A. Ojala, and T. Vesala, 2011: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res., 116, D02119, https://doi.org/10.1029/2010JD014542.

    • Search Google Scholar
    • Export Citation
  • Olsson, F., 2022: Impacts of water residence time on lake thermal structure: Implications for management and climate change. Ph.D. dissertation, Lancaster University, 271 pp.

  • Olsson, F., and Coauthors, 2022: Annual water residence time effects on thermal structure: A potential lake restoration measure? J. Environ. Manage., 314, 115082, https://doi.org/10.1016/j.jenvman.2022.115082.

    • Search Google Scholar
    • Export Citation
  • Oswald, C. J., and W. R. Rouse, 2004: Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River basin. J. Hydrometeor., 5, 129144, https://doi.org/10.1175/1525-7541(2004)005<0129:TCAEBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parajuli, A., D. F. Nadeau, F. Anctil, and M. Alves, 2021: Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada. Cryosphere, 15, 53715386, https://doi.org/10.5194/tc-15-5371-2021.

    • Search Google Scholar
    • Export Citation
  • Patel, S. S., and A. J. Rix, 2019: Water surface albedo modelling for floating PV plants. Sixth Southern African Solar Energy Conference (SASEC), Port Alfred, South Africa, Nelson Mandela University, 8, https://www.sasec.org.za/papers2019/8.pdf.

  • Pierre, A., P.-E. Isabelle, D. F. Nadeau, A. Thiboult, A. Perelet, A. N. Rousseau, F. Anctil, and J. Deschamps, 2022: Estimating sensible and latent heat fluxes over an inland water body using optical and microwave scintillometers. Bound.-Layer Meteor., 185, 277308, https://doi.org/10.1007/s10546-022-00732-7.

    • Search Google Scholar
    • Export Citation
  • Pierre, A., D. F. Nadeau, A. Thiboult, A. N. Rousseau, A. Tremblay, P.-E. Isabelle, and F. Anctil, 2023: Characteristic time scales of evaporation from a subarctic reservoir. Hydrol. Processes, 37, e14842, https://doi.org/10.1002/hyp.14842.

    • Search Google Scholar
    • Export Citation
  • Ragotzkie, R. A., 1978: Heat budgets of lakes. Lakes, Chemistry, Geology and Physics, A. Lerman, Ed., Springer, 1–19, https://doi.org/10.1007/978-1-4757-1152-3_1.

  • Ragotzkie, R. A., and G. E. Likens, 1964: The heat balance of two Antarctic lakes. Limnol. Oceanogr., 9, 412425, https://doi.org/10.4319/lo.1964.9.3.0412.

    • Search Google Scholar
    • Export Citation
  • Read, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslow, R. Kroiss, C. H. Wu, and E. Gaiser, 2011: Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Modell. Software, 26, 13251336, https://doi.org/10.1016/j.envsoft.2011.05.006.

    • Search Google Scholar
    • Export Citation
  • Reichstein, M., and Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biol., 11, 14241439, https://doi.org/10.1111/j.1365-2486.2005.001002.x.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Rodríguez, M., and E. Moreno-Ostos, 2006: Heat budget, energy storage and hydrological regime in a coastal lagoon. Limnologica, 36, 217227, https://doi.org/10.1016/j.limno.2006.05.003.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Rodríguez, M., E. Moreno-Ostos, I. De Vicente, L. Cruz‐Pizarro, and S. L. R. Da Silva, 2004: Thermal structure and energy budget in a small high mountain lake: La Caldera, Sierra Nevada, Spain. N. Z. J. Mar. Freshwater Res., 38, 879894, https://doi.org/10.1080/00288330.2004.9517287.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., C. Oswald, J. Binyamin, P. D. Blanken, W. M. Schertzer, and C. Spence, 2003: Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. J. Hydrometeor., 4, 720730, https://doi.org/10.1175/1525-7541(2003)004<0720:IASVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., C. Oswald, J. Binyamin, C. Spence, W. M. Schertzer, P. D. Blanken, N. Bussières, and C. R. Duguay, 2005: The role of northern lakes in a regional energy balance. J. Hydrometeor., 6, 291305, https://doi.org/10.1175/JHM421.1.

    • Search Google Scholar
    • Export Citation
  • Saros, J. E., R. M. Northington, C. L. Osburn, B. T. Burpee, and N. John Anderson, 2016: Thermal stratification in small arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures. Limnol. Oceanogr., 61, 15301542, https://doi.org/10.1002/lno.10314.

    • Search Google Scholar
    • Export Citation
  • Saur, J. F. T., and E. R. Anderson, 1956: The heat budget of a body of water of varying volume. Limnol. Oceanogr., 1, 247251, https://doi.org/10.4319/lo.1956.1.4.0247.

    • Search Google Scholar
    • Export Citation
  • Schmid, M., and J. Read, 2022: Heat Budget of Lakes. Encyclopedia of Inland Waters, 2nd ed. T. Mehner and K. Tockner, Eds., Elsevier Science, 467–473.

  • Seibert, J., M. Jenicek, M. Huss, T. Ewen, and D. Viviroli, 2021: Snow and ice in the hydrosphere. Snow and Ice-Related Hazards, Risks, and Disasters, 2nd ed. W. Haeberli, J. F. Shroder, and C. Whiteman, Eds., Elsevier Science, 93–135.

  • Spank, U., M. Hehn, P. Keller, M. Koschorreck, and C. Bernhofer, 2020: A season of eddy-covariance fluxes above an extensive water body based on observations from a floating platform. Bound.-Layer Meteor., 174, 433464, https://doi.org/10.1007/s10546-019-00490-z.

    • Search Google Scholar
    • Export Citation
  • Spence, C., W. R. Rouse, D. Worth, and C. Oswald, 2003: Energy budget processes of a small northern lake. J. Hydrometeor., 4, 694701, https://doi.org/10.1175/1525-7541(2003)004<0694:EBPOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, https://doi.org/10.1029/2011MS000072.

    • Search Google Scholar
    • Export Citation
  • Vallet-Coulomb, C., D. Legesse, F. Gasse, Y. Travi, and T. Chernet, 2001: Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). J. Hydrol., 245 (1–4), 118, https://doi.org/10.1016/S0022-1694(01)00341-9.

    • Search Google Scholar
    • Export Citation
  • Venkateshan, S. P., 2021: Heat Transfer. 3rd ed. Springer, 1015 pp.

  • Vincent, W. F., S. MacIntyre, R. H. Spigel, and I. Laurion, 2008: The physical limnology of high-latitude lakes. Polar Lakes and Rivers; Limnology of Arctic and Antarctic Aquatic Ecosystems, Oxford University Press, 65–82.

  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, https://doi.org/10.1016/S0168-1923(02)00109-0.

    • Search Google Scholar
    • Export Citation
  • Winter, T. C., D. C. Buso, D. O. Rosenberry, G. E. Likens, A. J. M. Sturrock, and D. P. Mau, 2003: Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire. Limnol. Oceanogr., 48, 9951009, https://doi.org/10.4319/lo.2003.48.3.0995.

    • Search Google Scholar
    • Export Citation
  • Xing, Z., D. A. Fong, K. M. Tan, E. Y.-M. Lo, and S. G. Monismith, 2012: Water and heat budgets of a shallow tropical reservoir. Water Resour. Res., 48, W06532, https://doi.org/10.1029/2011WR011314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 446 446 80
Full Text Views 181 181 41
PDF Downloads 121 121 25