Evaluation of Multisource Datasets in Characterizing Spatiotemporal Characteristics of Extreme Precipitation from 2001 to 2019 in China

Jiayi Lu aState Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Search for other papers by Jiayi Lu in
Current site
Google Scholar
PubMed
Close
,
Kaicun Wang bSino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
,
Guocan Wu aState Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Search for other papers by Guocan Wu in
Current site
Google Scholar
PubMed
Close
, and
Yuna Mao aState Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Search for other papers by Yuna Mao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3815-5388
Restricted access

Abstract

The spatiotemporal characteristics of extreme precipitation intensity are crucial for hydroclimatic studies. This study delineates the spatiotemporal distribution features of extreme precipitation intensity across China from 2001 to 2019 using the gridded daily precipitation dataset CN05.1, constructed from an observation network of over 2400 stations. Furthermore, we evaluate the reliability of 12 widely used precipitation datasets (including gauge-based, satellite retrieval, reanalysis, and fusion products) in monitoring extreme precipitation events. Our findings indicate the following: 1) CN05.1 reveals a consistent spatial distribution characterized by a decline in extreme precipitation intensity from the southeastern coastal regions toward the northwestern inland areas of China. From 2001 to 2019, more pronounced declining intensity trends are discernible in the northern and southwestern regions of China, whereas marked increasing trends manifest in the northeastern and the Yangtze River plain regions. National mean extreme precipitation indices consistently exhibit significant increasing trends throughout China. 2) Datasets based on station observations generally exhibit superior applicability concerning spatiotemporal distribution. 3) Multisource weighted precipitation fusion products effectively capture the temporal variability of extreme precipitation indices. 4) Satellite retrieval datasets exhibit notable performance disparities in representing various intensity indices. Most products tend to overestimate the increasing trends of national mean intensity indices. 5) Reanalysis datasets tend to overestimate extreme precipitation indices, and inadequately capture the trends. ERA5 and JRA-55 underestimate trends, while CFSR and MERRA-2 significantly overestimate the trends. These findings serve as a basis for selecting reliable precipitation datasets for extreme precipitation and hydrological simulation research in China.

Significance Statement

Extreme precipitation events have increasingly become more widespread, posing significant threats to human lives and property. Accurately understanding the spatiotemporal patterns of these events is imperative for effective mitigation. Despite the proliferation of precipitation products, their capacity to faithfully represent extreme events remains inadequately validated. In this study, we utilize a gauge-based dataset derived from over 2400 gauge stations across China to investigate the spatiotemporal changes in extreme precipitation events from 2001 to 2019. Subsequently, we conduct a rigorous evaluation of 12 widely used precipitation datasets to assess their efficacy in depicting extreme events. The results of this research offer valuable insights into the strengths and weaknesses of various precipitation products in depicting extreme events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuna Mao, myn@bnu.edu.cn

Abstract

The spatiotemporal characteristics of extreme precipitation intensity are crucial for hydroclimatic studies. This study delineates the spatiotemporal distribution features of extreme precipitation intensity across China from 2001 to 2019 using the gridded daily precipitation dataset CN05.1, constructed from an observation network of over 2400 stations. Furthermore, we evaluate the reliability of 12 widely used precipitation datasets (including gauge-based, satellite retrieval, reanalysis, and fusion products) in monitoring extreme precipitation events. Our findings indicate the following: 1) CN05.1 reveals a consistent spatial distribution characterized by a decline in extreme precipitation intensity from the southeastern coastal regions toward the northwestern inland areas of China. From 2001 to 2019, more pronounced declining intensity trends are discernible in the northern and southwestern regions of China, whereas marked increasing trends manifest in the northeastern and the Yangtze River plain regions. National mean extreme precipitation indices consistently exhibit significant increasing trends throughout China. 2) Datasets based on station observations generally exhibit superior applicability concerning spatiotemporal distribution. 3) Multisource weighted precipitation fusion products effectively capture the temporal variability of extreme precipitation indices. 4) Satellite retrieval datasets exhibit notable performance disparities in representing various intensity indices. Most products tend to overestimate the increasing trends of national mean intensity indices. 5) Reanalysis datasets tend to overestimate extreme precipitation indices, and inadequately capture the trends. ERA5 and JRA-55 underestimate trends, while CFSR and MERRA-2 significantly overestimate the trends. These findings serve as a basis for selecting reliable precipitation datasets for extreme precipitation and hydrological simulation research in China.

Significance Statement

Extreme precipitation events have increasingly become more widespread, posing significant threats to human lives and property. Accurately understanding the spatiotemporal patterns of these events is imperative for effective mitigation. Despite the proliferation of precipitation products, their capacity to faithfully represent extreme events remains inadequately validated. In this study, we utilize a gauge-based dataset derived from over 2400 gauge stations across China to investigate the spatiotemporal changes in extreme precipitation events from 2001 to 2019. Subsequently, we conduct a rigorous evaluation of 12 widely used precipitation datasets to assess their efficacy in depicting extreme events. The results of this research offer valuable insights into the strengths and weaknesses of various precipitation products in depicting extreme events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuna Mao, myn@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.1728 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2019: On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environ. Res. Lett., 14, 125008, https://doi.org/10.1088/1748-9326/ab51b6.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., M. Bador, R. Roca, S. Contractor, M. G. Donat, and P. L. Nguyen, 2020: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett., 15, 055002, https://doi.org/10.1088/1748-9326/ab79e2.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Bador, M., L. V. Alexander, S. Contractor, and R. Roca, 2020: Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environ. Res. Lett., 15, 035005, https://doi.org/10.1088/1748-9326/ab6a22.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Search Google Scholar
    • Export Citation
  • Burton, I., and Coauthors, 2012: Managing the risks: International level and integration across scales. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 393–436.

  • Chen, C., Z. Li, Y. Song, Z. Duan, K. Mo, Z. Wang, and Q. Chen, 2020: Performance of multiple satellite precipitation estimates over a typical arid mountainous area of China: Spatiotemporal patterns and extremes. J. Hydrometeor., 21, 533550, https://doi.org/10.1175/JHM-D-19-0167.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Gao, 2018: Evaluation of precipitation trends from high-resolution satellite precipitation products over mainland China. Climate Dyn., 51, 33113331, https://doi.org/10.1007/s00382-018-4080-z.

    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 49474961, https://doi.org/10.1175/JCLI-D-12-00575.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Similarity and difference of the two successive V6 and V7 TRMM Multisatellite Precipitation Analysis performance over China. J. Geophys. Res. Atmos., 118, 13 06013 074, https://doi.org/10.1002/2013JD019964.

    • Search Google Scholar
    • Export Citation
  • Ding, G., J. Guo, Z. Tang, H. Zhang, and H. Guo, 2022: Evaluation on applicability of various reanalysis datasets of precipitation in Changjiang River Basin. Renmin Changjiang, 53, 7279, https://doi.org/10.16232/j.cnki.1001-4179.2022.09.012.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. Li, Z. Jiang, and J. Yu, 2011: Advances in extremes statistics and their application to climate change study. Climate Change Res., 7, 248252, https://doi.org/10.3969/j.issn.1673-1719.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, https://doi.org/10.1038/nclimate2051.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. K. Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Fu, G., J. Yu, X. Yu, R. Ouyang, Y. Zhang, P. Wang, W. Liu, and L. Min, 2013: Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol., 487, 4859, https://doi.org/10.1016/j.jhydrol.2013.02.021.

    • Search Google Scholar
    • Export Citation
  • Funk, C., L. Harrison, L. Alexander, P. Peterson, A. Behrangi, and G. Husak, 2019: Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions. Environ. Res. Lett., 14, 115002, https://doi.org/10.1088/1748-9326/ab4a6c.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., V. V. Koknaeva, T. A. Belokrylova, and T. R. Karl, 1991: Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Amer. Meteor. Soc., 72, 17251733, https://doi.org/10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, X., L. Ye, Q. Xin, C. Zhang, F. Zeng, S. D. Nerantzaki, and S. M. Papalexiou, 2022: Extreme precipitation in China: A review on statistical methods and applications. Adv. Water Resour., 163, 104144, https://doi.org/10.1016/j.advwatres.2022.104144.

    • Search Google Scholar
    • Export Citation
  • Guan, Y., F. Zheng, X. Zhang, and B. Wang, 2017: Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol., 37, 12821298, https://doi.org/10.1002/joc.4776.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., D. Yang, Y. Wang, and H. Yang, 2013: Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin. Sci. China Technol. Sci., 56, 853865, https://doi.org/10.1007/s11431-013-5176-7.

    • Search Google Scholar
    • Export Citation
  • Hua, W., L. Zhou, S. E. Nicholson, H. Chen, and M. Qin, 2019: Assessing reanalysis data for understanding rainfall climatology and variability over central equatorial Africa. Climate Dyn., 53, 651669, https://doi.org/10.1007/s00382-018-04604-0.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 10 December 2022, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

  • Inoue, T., and J. Matsumoto, 2004: A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960–99. J. Meteor. Soc. Japan, 82, 951958, https://doi.org/10.2151/jmsj.2004.951.

    • Search Google Scholar
    • Export Citation
  • Jones, E., A. A. Wing, and R. Parfitt, 2021: A global perspective of tropical cyclone precipitation in reanalyses. J. Climate, 34, 84618480, https://doi.org/10.1175/JCLI-D-20-0892.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Lanza, L. G., and E. Vuerich, 2009: The WMO field intercomparison of rain intensity gauges. Atmos. Res., 94, 534543, https://doi.org/10.1016/j.atmosres.2009.06.012.

    • Search Google Scholar
    • Export Citation
  • Lei, X., and Coauthors, 2022: How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme precipitation. Front. Environ. Sci., 10, 921658, https://doi.org/10.3389/fenvs.2022.921658.

    • Search Google Scholar
    • Export Citation
  • Li, P., and Coauthors, 2023: Intensification of mesoscale convective systems in the East Asian rainband over the past two decades. Geophys. Res. Lett., 50, e2023GL103595, https://doi.org/10.1029/2023GL103595.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Zhuang, P. Bai, Y. Zeng, Y. Xing, and Z. Yang, 2022: Improving and comprehensive evaluation precipitation estimation by merging multi-satellite precipitation products in different climate regions of China. Geogr. Res., 41, 33353351, https://doi.org/10.11821/dlyj020220206.

    • Search Google Scholar
    • Export Citation
  • Lin, R., T. Zhou, and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 12711289, https://doi.org/10.1175/JCLI-D-13-00215.1.

    • Search Google Scholar
    • Export Citation
  • Liu, B., X. Chen, J. Chen, and X. Chen, 2017: Impacts of different threshold definition methods on analyzing temporal-spatial features of extreme precipitation in the Pearl River Basin. Stochastic Environ. Res. Risk Assess., 31, 12411252, https://doi.org/10.1007/s00477-016-1284-9.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Xia, D. She, L. Li, Q. Wang, and L. Zou, 2019: Evaluation of six satellite-based precipitation products and their ability for capturing characteristics of extreme precipitation events over a climate transition area in China. Remote Sens., 11, 1477, https://doi.org/10.3390/rs11121477.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, https://doi.org/10.1175/JCLI-D-15-0011.1.

    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., Y. Zhang, D. Yang, and S. B. Farhan, 2015: Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol., 35, 12011211, https://doi.org/10.1002/joc.4045.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mantas, V. M., Z. Liu, C. Caro, and A. J. S. C. Pereira, 2015: Validation of TRMM Multi-Satellite Precipitation Analysis (TMPA) products in the Peruvian Andes. Atmos. Res., 163, 132145, https://doi.org/10.1016/j.atmosres.2014.11.012.

    • Search Google Scholar
    • Export Citation
  • Miao, Y., R. Liu, Q. Wang, L. Jiao, Y. Wang, L. Li, and L. Cao, 2021: Study of uncertainty of satellite and reanalysis precipitation products and their impact on hydrological simulation. Environ. Sci. Pollut. Res., 28, 60 93560 953, https://doi.org/10.1007/s11356-021-14847-w.

    • Search Google Scholar
    • Export Citation
  • Nadeem, M. U., A. A. J. Ghanim, M. N. Anjum, D. Shangguan, G. Rasool, M. Irfan, U. M. Niazi, and S. Hassan, 2022: Multiscale ground validation of satellite and reanalysis precipitation products over diverse climatic and topographic conditions. Remote Sens., 14, 4680, https://doi.org/10.3390/rs14184680.

    • Search Google Scholar
    • Export Citation
  • Ning, L., and Y. Qian, 2009: Interdecadal change in extreme precipitation over South China and its mechanism. Adv. Atmos. Sci., 26, 109118, https://doi.org/10.1007/s00376-009-0109-x.

    • Search Google Scholar
    • Export Citation
  • Peng, Z., Y. Li, W. Yu, Y. Xing, A. Feng, and S. Du, 2021: Research on the applicability of remote sensing precipitation products in different climatic regions of China. J. Geo-Inf. Sci., 23, 12961311, https://doi.org/10.12082/dqxxkx.2021.200348.

    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, A. AghaKouchak, and D. S. Pai, 2015: Error characterization of TRMM Multisatellite Precipitation Analysis (TMPA-3B42) products over India for different seasons. J. Hydrol., 529, 13021312, https://doi.org/10.1016/j.jhydrol.2015.08.062.

    • Search Google Scholar
    • Export Citation
  • Quagraine, K. A., F. Nkrumah, C. Klein, N. A. B. Klutse, and K. T. Quagraine, 2020: West African summer monsoon precipitation variability as represented by reanalysis datasets. Climate, 8, 111, https://doi.org/10.3390/cli8100111.

    • Search Google Scholar
    • Export Citation
  • Ren, Y., B. Yong, D. Lu, and H. Chen, 2019: Evaluation of the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM) mission over the Mainland China at multiple scales (in Chinese). Hupo Kexue, 31, 560572, https://doi.org/10.18307/2019.0224.

    • Search Google Scholar
    • Export Citation
  • Ren, Y., J. Zhang, J. Fu, S. Peng, and Z. Li, 2022: Spatiotemporally varied extreme precipitation events simultaneously controlled by multiple circulation factors in China’s Loess Plateau. Int. J. Climatol., 42, 63516372, https://doi.org/10.1002/joc.7593.

    • Search Google Scholar
    • Export Citation
  • Ren, Z., M. Zhang, S. Wang, F. Qiang, X. Zhu, and L. Dong, 2015: Changes in daily extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci., 25, 5868, https://doi.org/10.1007/s11442-015-1153-3.

    • Search Google Scholar
    • Export Citation
  • Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Jucá, S. Contractor, M. G. Bosilovich, and S. Cloché, 2019: FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 11, 10171035, https://doi.org/10.5194/essd-11-1017-2019.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schamm, K., M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender, 2014: Global gridded precipitation over land: A description of the new GPCC first guess daily product. Earth Syst. Sci. Data, 6, 4960, https://doi.org/10.5194/essd-6-49-2014.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513–1766.

  • Shedekar, V. S., K. W. King, N. R. Fausey, A. B. O. Soboyejo, R. D. Harmel, and L. C. Brown, 2016: Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges. Atmos. Res., 178–179, 445458, https://doi.org/10.1016/j.atmosres.2016.04.016.

    • Search Google Scholar
    • Export Citation
  • Shi, J., L. Cui, K. Wen, Z. Tian, P. Wei, and B. Zhang, 2018: Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res., 161, 381391, https://doi.org/10.1016/j.envres.2017.11.037.

    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, https://doi.org/10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., Z. Zhu, and Y. Li, 2021: Validation of land data assimilation and reanalysis precipitation datasets over inner Mongolia. Arid Zone Res., 38, 16241636, https://doi.org/10.13866/j.azr.2021.06.14.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Search Google Scholar
    • Export Citation
  • Sun, S., C. Shi, Y. Pan, L. Bai, B. Xu, T. Zhang, S. Han, and L. Jiang, 2020: Applicability assessment of the 1998–2018 CLDAS multi-source precipitation fusion dataset over China. J. Meteor. Res., 34, 879892, https://doi.org/10.1007/s13351-020-9101-2.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and Z. Duan, 2017: Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9, 720, https://doi.org/10.3390/rs9070720.

    • Search Google Scholar
    • Export Citation
  • Tang, G., M. P. Clark, S. M. Papalexiou, Z. Ma, and Y. Hong, 2020: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospects for reanalysis for weather and climate. Eos, Trans. Amer. Geophys. Union, 89, 234235, https://doi.org/10.1029/2008EO260002.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Chen, S. F. B. Tett, Z. Yan, P. Zhai, J. Feng, and J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun., 11, 528, https://doi.org/10.1038/s41467-019-14233-8.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., J. Xia, D. She, X. Zhang, J. Liu, and Y. Zhang, 2021: Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China. Atmos. Res., 257, 105554, https://doi.org/10.1016/j.atmosres.2021.105554.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Li, M. Wang, Y. Li, X. Gong, Y. Chen, Y. Chen, and W. Cao, 2021: Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming. Int. J. Climatol., 41, 14651483, https://doi.org/10.1002/joc.6865.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Wu, S. Bai, F. Shi, and Z. Han, 2022: Spatiotemporal changes of sloping farmland resources and its soil erosion effects in Yan’an City. Res. Soil Water Conserv., 29, 111, https://doi.org/10.13869/j.cnki.rswc.2022.03.019.

    • Search Google Scholar
    • Export Citation
  • Wei, G., H. , W. T. Crow, Y. Zhu, J. Wang, and J. Su, 2018: Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over Mainland China. Adv. Meteor., 2018, 3024190, https://doi.org/10.1155/2018/3024190.

    • Search Google Scholar
    • Export Citation
  • Wu, J., and X.-J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys., 56, 11021111, https://doi.org/10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Xia, X., Y. Tian, W. Tan, and Shao, 2022: Evaluation of satellite precipitation products in China. Water Resour. Hydropower Eng., 53, 2940, https://doi.org/10.13928/j.cnki.wrahe.2022.08.003.

    • Search Google Scholar
    • Export Citation
  • Xiao, M., Q. Zhang, and V. P. Singh, 2017: Spatiotemporal variations of extreme precipitation regimes during 1961–2010 and possible teleconnections with climate indices across China. Int. J. Climatol., 37, 468479, https://doi.org/10.1002/joc.4719.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Search Google Scholar
    • Export Citation
  • Xie, W., S. Yi, C. Leng, D. Xia, M. Li, Z. Zhong, and J. Ye, 2022: The evaluation of IMERG and ERA5-land daily precipitation over China with considering the influence of gauge data bias. Sci. Rep., 12, 8085, https://doi.org/10.1038/s41598-022-12307-0.

    • Search Google Scholar
    • Export Citation
  • Xiong, L., C. Liu, S. Chen, X. Zha, and Q. Ma, 2021: Review of post-processing research for remote-sensing precipitation products. Adv. Water Sci., 32, 627637, https://doi.org/10.14042/j.cnki.32.1309.2021.04.014.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Z. Ma, S. Yan, and J. Peng, 2022: Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol., 605, 127353, https://doi.org/10.1016/j.jhydrol.2021.127353.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and T. Ohata, 2001: A bias-corrected Siberian regional precipitation climatology. J. Hydrometeor., 2, 122139, https://doi.org/10.1175/1525-7541(2001)002<0122:ABCSRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ye, B., D. Yang, Y. Ding, T. Han, and T. Koike, 2004: A bias-corrected precipitation climatology for China. J. Hydrometeor., 5, 11471160, https://doi.org/10.1175/JHM-366.1.

    • Search Google Scholar
    • Export Citation
  • Yu, E., J. Sun, H. Chen, and W. Xiang, 2015: Evaluation of a high-resolution historical simulation over China: Climatology and extremes. Climate Dyn., 45, 20132031, https://doi.org/10.1007/s00382-014-2452-6.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Lan, G. Qin, C. R. Mello, E. W. Boyer, P. Luo, and L. Guo, 2021: Evaluation of three gridded precipitation products to quantify water inputs over complex mountainous terrain of western China. Remote Sens., 13, 3795, https://doi.org/10.3390/rs13193795.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., X. Chen, R. Lai, and Z. Zhu, 2022: Performance of satellite-based and reanalysis precipitation products under multi-temporal scales and extreme weather in mainland China. J. Hydrol., 605, 127389, https://doi.org/10.1016/j.jhydrol.2021.127389.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Y. Li, J. Li, and P. Feng, 2022: Research progress on multi-source rainfall data fusion and their hydrological application. Ziran Zaihai Xuebao, 31, 1528, https://doi.org/10.13577/j.jnd.2022.0102.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res., 110, D22104, https://doi.org/10.1029/2005JD006181.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., J. Gong, H. Wang, S. Wei, Q. Song, and Y. Zhou, 2020: Changes of temperature and precipitation extremes in a typical arid and semiarid zone: Observations and multi-model ensemble projections. Int. J. Climatol., 40, 51285153, https://doi.org/10.1002/joc.6510.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 10511066, https://doi.org/10.1002/joc.4400.

    • Search Google Scholar
    • Export Citation
  • Zhou, B.-T., and J. Qian, 2021: Changes of weather and climate extremes in the IPCC AR6. Climate Change Res., 17, 713718, https://doi.org/10.12006/j.issn.1673-1719.2021.167.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., W. Xuan, L. Liu, and Y.-P. Xu, 2016: Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Processes, 30, 30613083, https://doi.org/10.1002/hyp.10846.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 466 466 87
Full Text Views 191 191 16
PDF Downloads 158 158 12