Global Evaluation of Simulated High and Low Flows from 23 Macroscale Models

Hui Guo aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
bNorth China University of Water Resources and Electric Power, Zhengzhou, China

Search for other papers by Hui Guo in
Current site
Google Scholar
PubMed
Close
,
Ying Hou aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Ying Hou in
Current site
Google Scholar
PubMed
Close
,
Yuting Yang aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Yuting Yang in
Current site
Google Scholar
PubMed
Close
, and
Tim R. McVicar cCSIRO Environment, Black Mountain, Canberra, Australian Capital Territory, Australia

Search for other papers by Tim R. McVicar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Macroscale hydrological/land surface models are important tools for assessing historical and predicting future characteristics of extreme hydrological events, yet quantitative understandings of how these large-scale models perform in simulating extreme hydrological characteristics remain limited. Here we evaluate simulated high and low flows from 23 macroscale models within three modeling experiments (i.e., 14 climate models from CMIP6, 6 global hydrological models from ISIMIP2a, and 3 land surface models from GLDAS) against observation in 633 unimpaired catchments globally over 1971–2010. Our findings reveal limitations in simulating extreme flow characteristics by these models. Specifically, we find that (i) most models overestimate high-flow magnitudes (bias range: from +15% to +70%) and underestimate low-flow magnitudes (bias range: from −80% to −20%); (ii) interannual variability in high and low flows is reasonably reproduced by ISIMIP2a and GLDAS models but poorly reproduced by CMIP6 models; (iii) no model consistently replicates the observed trend direction in high and low flows in over two-thirds of the catchments, and most models overestimate high-flow trends and underestimate low-flow trends; and (iv) CMIP6 and GLDAS models show timing biases, with early high flows and late low flows, while ISIMIP2a models exhibit the opposite pattern. Furthermore, all models performed better in more humid environments and noncold regions, with model structure and parameterization contributing more to uncertainties than climatic forcings. Overall, our results demonstrate that extreme flow characteristics simulated from current state-of-the-art macroscale models still contain large uncertainties and provide important guidance regarding the robustness of assessing extreme hydrometeorological events based on these modeling outputs.

Significance Statement

Macroscale hydrological and land surface models represent crucial tools for assessing historical trends and making predictions about future hydrological changes. Nevertheless, our current understanding of the quantitative performance of these large-scale models in simulating extreme hydrological characteristics remains limited. Here, we evaluate simulated high and low flows from 23 state-of-the-art macroscale models against observation in 633 unimpaired catchments globally over 1971–2010. Our results reveal important limitations in the extreme flow characteristics simulated from these models and provide important guidance regarding the robustness of assessing extreme hydrometeorological events based on these modeling outputs. The model evaluation performed herein serves as a pivotal, offering valuable insights to inform the development of the next generation of macroscale hydrological and land surface models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuting Yang, yuting_yang@tsinghua.edu.cn

Abstract

Macroscale hydrological/land surface models are important tools for assessing historical and predicting future characteristics of extreme hydrological events, yet quantitative understandings of how these large-scale models perform in simulating extreme hydrological characteristics remain limited. Here we evaluate simulated high and low flows from 23 macroscale models within three modeling experiments (i.e., 14 climate models from CMIP6, 6 global hydrological models from ISIMIP2a, and 3 land surface models from GLDAS) against observation in 633 unimpaired catchments globally over 1971–2010. Our findings reveal limitations in simulating extreme flow characteristics by these models. Specifically, we find that (i) most models overestimate high-flow magnitudes (bias range: from +15% to +70%) and underestimate low-flow magnitudes (bias range: from −80% to −20%); (ii) interannual variability in high and low flows is reasonably reproduced by ISIMIP2a and GLDAS models but poorly reproduced by CMIP6 models; (iii) no model consistently replicates the observed trend direction in high and low flows in over two-thirds of the catchments, and most models overestimate high-flow trends and underestimate low-flow trends; and (iv) CMIP6 and GLDAS models show timing biases, with early high flows and late low flows, while ISIMIP2a models exhibit the opposite pattern. Furthermore, all models performed better in more humid environments and noncold regions, with model structure and parameterization contributing more to uncertainties than climatic forcings. Overall, our results demonstrate that extreme flow characteristics simulated from current state-of-the-art macroscale models still contain large uncertainties and provide important guidance regarding the robustness of assessing extreme hydrometeorological events based on these modeling outputs.

Significance Statement

Macroscale hydrological and land surface models represent crucial tools for assessing historical trends and making predictions about future hydrological changes. Nevertheless, our current understanding of the quantitative performance of these large-scale models in simulating extreme hydrological characteristics remains limited. Here, we evaluate simulated high and low flows from 23 state-of-the-art macroscale models against observation in 633 unimpaired catchments globally over 1971–2010. Our results reveal important limitations in the extreme flow characteristics simulated from these models and provide important guidance regarding the robustness of assessing extreme hydrometeorological events based on these modeling outputs. The model evaluation performed herein serves as a pivotal, offering valuable insights to inform the development of the next generation of macroscale hydrological and land surface models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuting Yang, yuting_yang@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.1934 MB)
Save
  • Alkama, R., B. Decharme, H. Douville, and A. Ribes, 2011: Trends in global and basin-scale runoff over the late twentieth century: Methodological issues and sources of uncertainty. J. Climate, 24, 30003014, https://doi.org/10.1175/2010JCLI3921.1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. de Roo, and A. I. J. M. van Dijk, 2015: Global maps of streamflow characteristics based on observations from several thousand catchments. J. Hydrometeor., 16, 14781501, https://doi.org/10.1175/JHM-D-14-0155.1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017a: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. van Dijk, A. de Roo, E. Dutra, G. Fink, R. Orth, and J. Schellekens, 2017b: Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci., 21, 28812903, https://doi.org/10.5194/hess-21-2881-2017.

    • Search Google Scholar
    • Export Citation
  • Beevers, L., L. Collet, G. Aitken, C. Maravat, and A. Visser, 2020: The influence of climate model uncertainty on fluvial flood hazard estimation. Nat. Hazards, 104, 24892510, https://doi.org/10.1007/s11069-020-04282-4.

    • Search Google Scholar
    • Export Citation
  • Blackburn, S. R., and E. H. Stanley, 2021: Floods increase carbon dioxide and methane fluxes in agricultural streams. Freshwater Biol., 66, 6277, https://doi.org/10.1111/fwb.13614.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, https://doi.org/10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., J. D. Herman, P. M. Reed, and E. F. Wood, 2015: Flood and drought hydrologic monitoring: The role of model parameter uncertainty. Hydrol. Earth Syst. Sci., 19, 32393251, https://doi.org/10.5194/hess-19-3239-2015.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and Coauthors, 2019: Global mean climate and main patterns of variability in the CMCC‐CM2 coupled model. J. Adv. Model. Earth Syst., 11, 185209, https://doi.org/10.1029/2018MS001369.

    • Search Google Scholar
    • Export Citation
  • Chiang, F., O. Mazdiyasni, and A. AghaKouchak, 2021: Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun., 12, 2754, https://doi.org/10.1038/s41467-021-22314-w.

    • Search Google Scholar
    • Export Citation
  • Cutore, P., G. Cristaudo, A. Campisano, C. Modica, A. Cancelliere, and G. Rossi, 2007: Regional models for the estimation of streamflow series in ungauged basins. Water Resour. Manage., 21, 789800, https://doi.org/10.1007/s11269-006-9110-7.

    • Search Google Scholar
    • Export Citation
  • De Luca, P., G. Messori, R. L. Wilby, M. Mazzoleni, and G. Di Baldassarre, 2020: Concurrent wet and dry hydrological extremes at the global scale. Earth Syst. Dyn., 11, 251266, https://doi.org/10.5194/esd-11-251-2020.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Dethier, E. N., S. L. Sartain, C. E. Renshaw, and F. J. Magilligan, 2020: Spatially coherent regional changes in seasonal extreme streamflow events in the United States and Canada since 1950. Sci. Adv., 6, eaba593, https://doi.org/10.1126/sciadv.aba5939.

    • Search Google Scholar
    • Export Citation
  • Dottori, F., and Coauthors, 2018: Increased human and economic losses from river flooding with anthropogenic warming. Nat. Climate Change, 8, 781786, https://doi.org/10.1038/s41558-018-0257-z.

    • Search Google Scholar
    • Export Citation
  • Dunne, T., 1978: Field studies of hillslope flow processes. Hillslope Hydrology, John Wiley and Sons, 227–293, https://www.researchgate.net/publication/243780862.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Falcone, J. A., D. M. Carlisle, D. M. Wolock, and M. R. Meador, 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621621, https://doi.org/10.1890/09-0889.1.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., and C. J. Vörösmarty, 2007: The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ., 309, 129136.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., and Coauthors, 2017: Assessing the impacts of 1.5°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev., 10, 43214345, https://doi.org/10.5194/gmd-10-4321-2017.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., V. V. Kharin, B. D. Santer, J. N. S. Cole, and N. P. Gillett, 2021: Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl. Acad. Sci. USA, 118, e2016549118, https://doi.org/10.1073/pnas.2016549118.

    • Search Google Scholar
    • Export Citation
  • Giuntoli, I., J.-P. Vidal, C. Prudhomme, and D. M. Hannah, 2015: Future hydrological extremes: The uncertainty from multiple global climate and global hydrological models. Earth Syst. Dyn., 6, 267285, https://doi.org/10.5194/esd-6-267-2015.

    • Search Google Scholar
    • Export Citation
  • Gleason, C. J., L. C. Smith, and J. Lee, 2014: Retrieval of river discharge solely from satellite imagery and at‐many‐stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resour. Res., 50, 96049619, https://doi.org/10.1002/2014WR016109.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., and N. W. Arnell, 2011: Simulating current global river runoff with a global hydrological model: Model revisions, validation, and sensitivity analysis. Hydrol. Processes, 25, 11291145, https://doi.org/10.1002/hyp.7727.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., and Coauthors, 2012: Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe. J. Hydrometeor., 13, 604620, https://doi.org/10.1175/JHM-D-11-083.1.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., and Coauthors, 2021: Globally observed trends in mean and extreme river flow attributed to climate change. Science, 371, 11591162, https://doi.org/10.1126/science.aba3996.

    • Search Google Scholar
    • Export Citation
  • Gutjahr, O., D. Putrasahan, K. Lohmann, J. H. Jungclaus, J.-S. von Storch, N. Brüggemann, H. Haak, and A. Stössel, 2019: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 12, 32413281, https://doi.org/10.5194/gmd-12-3241-2019.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka, 2008: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, https://doi.org/10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36, 771778, https://doi.org/10.1007/s00376-019-9027-8.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2021: Toward consistent observational constraints in climate predictions and projections. Front. Climate, 3, 6781009, https://doi.org/10.3389/fclim.2021.678109.

    • Search Google Scholar
    • Export Citation
  • Hendrawan, V. S. A., W. Kim, Y. Touge, S. Ke, and D. Komori, 2022: A global-scale relationship between crop yield anomaly and multiscalar drought index based on multiple precipitation data. Environ. Res. Lett., 17, 014037, https://doi.org/10.1088/1748-9326/ac45b4.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., S. Kanae, S. Emori, T. Oki, and M. Kimoto, 2008: Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J., 53, 754772, https://doi.org/10.1623/hysj.53.4.754.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae, 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, https://doi.org/10.1038/nclimate1911.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., H. Alifu, D. Yamazaki, Y. Imada, H. Shiogama, and Y. Kimura, 2021: Anthropogenic climate change has changed frequency of past flood during 2010–2013. Prog. Earth Planet. Sci., 8, 36, https://doi.org/10.1186/s40645-021-00431-w.

    • Search Google Scholar
    • Export Citation
  • Hou, Y., H. Guo, Y. Yang, and W. Liu, 2023: Global evaluation of runoff simulation from climate, hydrological and land surface models. Water Resour. Res., 59, e2021WR031817, https://doi.org/10.1029/2021WR031817.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp., https://www.ipcc.ch/report/ar6/wg1/.

  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H., 2017: Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1). Data Integration and Analysis System (DIAS), accessed 17 June 2022, https://search.diasjp.net/en/dataset/GSWP3_EXP1_Forcing.

  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Kreibich, H., and Coauthors, 2022: The challenge of unprecedented floods and droughts in risk management. Nature, 608, 8086, https://doi.org/10.1038/s41586-022-04917-5.

    • Search Google Scholar
    • Export Citation
  • Kulinich, M., Y. Fan, S. Penev, J. P. Evans, and R. Olson, 2021: A Markov chain method for weighting climate model ensembles. Geosci. Model Dev., 14, 35393551, https://doi.org/10.5194/gmd-14-3539-2021.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., 2012: Derivation of watershed boundaries for GRDC gauging stations based on the HydroSHEDS drainage network. GRDC Tech. Rep. 41, 18 pp., https://www.bafg.de/GRDC/EN/02_srvcs/24_rprtsrs/report_41.pdf?__blob=publicationFile.

  • Lehner, B., and Coauthors, 2011: High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ., 9, 494502, https://doi.org/10.1890/100125.

    • Search Google Scholar
    • Export Citation
  • Li, Z., H. Zhao, J. Liu, J. Zhang, and Z. Shao, 2022: Evaluation and promotion strategy of resilience of urban water supply system under flood and drought disasters. Sci. Rep., 12, 7404, https://doi.org/10.1038/s41598-022-11436-w.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Lim, W. H., D. Yamazaki, S. Koirala, Y. Hirabayashi, S. Kanae, S. J. Dadson, J. W. Hall, and F. Sun, 2018: Long‐term changes in global socioeconomic benefits of flood defenses and residual risk based on CMIP5 climate models. Earth’s Future, 6, 938954, https://doi.org/10.1002/2017EF000671.

    • Search Google Scholar
    • Export Citation
  • Liu, W., T. Yang, F. Sun, H. Wang, Y. Feng, and M. Du, 2021: Observation‐constrained projection of global flood magnitudes with anthropogenic warming. Water Resour. Res., 57, e2020WR028830, https://doi.org/10.1029/2020WR028830.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Huang, X. Xiao, and X. Tong, 2022: The capability of CMIP6 models on seasonal precipitation extremes over Central Asia. Atmos. Res., 278, 106364, https://doi.org/10.1016/j.atmosres.2022.106364.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, R. J. Donohue, and T. G. Van Niel, 2012: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near‐surface wind speeds. Ecohydrology, 5, 381388, https://doi.org/10.1002/eco.1298.

    • Search Google Scholar
    • Export Citation
  • Meresa, H., C. Murphy, R. Fealy, and S. Golian, 2021: Uncertainties and their interaction in flood hazard assessment with climate change. Hydrol. Earth Syst. Sci., 25, 52375257, https://doi.org/10.5194/hess-25-5237-2021.

    • Search Google Scholar
    • Export Citation
  • Mester, B., S. N. Willner, K. Frieler, and J. Schewe, 2021: Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings. Environ. Res. Lett., 16, 094010, https://doi.org/10.1088/1748-9326/ac188d.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, https://doi.org/10.1126/science.1151915.

    • Search Google Scholar
    • Export Citation
  • Mockler, E. M., K. P. Chun, G. Sapriza-Azuri, M. Bruen, and H. S. Wheater, 2016: Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations. Adv. Water Resour., 97, 299313, https://doi.org/10.1016/j.advwatres.2016.10.008.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Müller Schmied, H., S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll, 2014: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci., 18, 35113538, https://doi.org/10.5194/hess-18-3511-2014.

    • Search Google Scholar
    • Export Citation
  • Müller Schmied, H., and Coauthors, 2016: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci., 20, 28772898, https://doi.org/10.5194/hess-20-2877-2016.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Sabater, J., and Coauthors, 2021: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, 43494383, https://doi.org/10.5194/essd-13-4349-2021.

    • Search Google Scholar
    • Export Citation
  • Neubauer, D., and Coauthors, 2019: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical, version 20201101. Earth System Grid Federation, accessed 17 June 2022, https://doi.org/10.22033/esgf/cmip6.1621.

  • Pilgrim, D. H., T. G. Chapman, and D. G. Doran, 1988: Problems of rainfall-runoff modelling in arid and semiarid regions. Hydrol. Sci. J., 33, 379400, https://doi.org/10.1080/02626668809491261.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sidorenko, D., and Coauthors, 2015: Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: Model formulation and mean climate. Climate Dyn., 44, 757780, https://doi.org/10.1007/s00382-014-2290-6.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon, 2015: A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci., 19, 15211545, https://doi.org/10.5194/hess-19-1521-2015.

    • Search Google Scholar
    • Export Citation
  • Sippel, S., N. Meinshausen, E. Székely, E. Fischer, A. G. Pendergrass, F. Lehner, and R. Knutti, 2021: Robust detection of forced warming in the presence of potentially large climate variability. Sci. Adv., 7, eabh4429, https://doi.org/10.1126/sciadv.abh4429.

    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., 2003: Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Processes, 17, 31633170, https://doi.org/10.1002/hyp.5155.

    • Search Google Scholar
    • Export Citation
  • Swapna, P., R. Krishnan, N. Sandeep, A. G. Prajeesh, D. C. Ayantika, S. Manmeet, and R. Vellore, 2018: Long‐term climate simulations using the IITM Earth System Model (IITM‐ESMv2) with focus on the south Asian monsoon. J. Adv. Model. Earth Syst., 10, 11271149, https://doi.org/10.1029/2017MS001262.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., D. M. Lawrence, and H. Lee, 2012: Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J. Adv. Model. Earth Syst., 4, M08002, https://doi.org/10.1029/2012MS000165.

    • Search Google Scholar
    • Export Citation
  • Tabari, H., P. Hosseinzadehtalaei, W. Thiery, and P. Willems, 2021: Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future, 9, e2021EF002295, https://doi.org/10.1029/2021EF002295.

    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, https://doi.org/10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., T. Oki, S. Kanae, and H. Hu, 2007: The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation. J. Hydrometeor., 8, 499512, https://doi.org/10.1175/JHM589.1.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Search Google Scholar
    • Export Citation
  • Venkatappa, M., N. Sasaki, P. Han, and I. Abe, 2021: Impacts of droughts and floods on croplands and crop production in Southeast Asia – An application of Google Earth Engine. Sci. Total Environ., 795, 148829, https://doi.org/10.1016/j.scitotenv.2021.148829.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., D. Wisser, and M. F. P. Bierkens, 2014: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 1540, https://doi.org/10.5194/esd-5-15-2014.

    • Search Google Scholar
    • Export Citation
  • Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe, 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. USA, 111, 32283232, https://doi.org/10.1073/pnas.1312330110.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res., 50, 75057514, https://doi.org/10.1002/2014WR015638.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., G. A. M. de Almeida, and P. D. Bates, 2013: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res., 49, 72217235, https://doi.org/10.1002/wrcr.20552.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., and Coauthors, 2017: A high‐accuracy map of global terrain elevations. Geophys. Res. Lett., 44, 58445853, https://doi.org/10.1002/2017GL072874.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., D. Ikeshima, J. Sosa, P. D. Bates, G. H. Allen, and T. M. Pavelsky, 2019: MERIT Hydro: A high‐resolution global hydrography map based on latest topography dataset. Water Resour. Res., 55, 50535073, https://doi.org/10.1029/2019WR024873.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and Coauthors, 2015: Multicriteria evaluation of discharge simulation in dynamic global vegetation models. J. Geophys. Res. Atmos., 120, 74887505, https://doi.org/10.1002/2015JD023129.

    • Search Google Scholar
    • Export Citation
  • Yang, T., F. Sun, P. Gentine, W. Liu, H. Wang, J. Yin, M. Du, and C. Liu, 2019: Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environ. Res. Lett., 14, 114027, https://doi.org/10.1088/1748-9326/ab4d5e.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. L. Roderick, D. Yang, Z. Wang, F. Ruan, T. R. McVicar, S. Zhang, and H. E. Beck, 2021: Streamflow stationarity in a changing world. Environ. Res. Lett., 16, 064096, https://doi.org/10.1088/1748-9326/ac08c1.

    • Search Google Scholar
    • Export Citation
  • Yin, J., P. Gentine, S. Zhou, S. C. Sullivan, R. Wang, Y. Zhang, and S. Guo, 2018: Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun., 9, 4389, https://doi.org/10.1038/s41467-018-06765-2.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Search Google Scholar
    • Export Citation
  • Zaherpour, J., and Coauthors, 2018: Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environ. Res. Lett., 13, 065015, https://doi.org/10.1088/1748-9326/aac547.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., M. Rodell, and F. Olivera, 2010: Evaluation of the global land data assimilation system using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, 2009WR007811, https://doi.org/10.1029/2009WR007811.

    • Search Google Scholar
    • Export Citation
  • Zhai, R., F. Tao, U. Lall, B. Fu, J. Elliott, and J. Jägermeyr, 2020: Larger drought and flood hazards and adverse impacts on population and economic productivity under 2.0 than 1.5°C warming. Earth’s Future, 8, e2019EF001398, https://doi.org/10.1029/2019EF001398.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and Coauthors, 2022: Reconciling disagreement on global river flood changes in a warming climate. Nat. Climate Change, 12, 11601167, https://doi.org/10.1038/s41558-022-01539-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., N. Viney, A. Frost, A. Oke, M. Brooks, Y. Chen, and N. Campbell, 2013: Collation of Australian modeller’s streamflow dataset for 780 unregulated Australian catchments. CSIRO Tech. Rep., 115 pp., https://doi.org/10.4225/08/58b5baad4fcc2.

  • Zhao, F., and Coauthors, 2017: The critical role of the routing scheme in simulating peak river discharge in global hydrological models. Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250.

    • Search Google Scholar
    • Export Citation
  • Ziehn, T., and Coauthors, 2020: The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisphere. Earth Syst. Sci., 70, 193214, https://doi.org/10.1071/ES19035.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 411 411 37
Full Text Views 198 198 57
PDF Downloads 152 152 55