Global Precipitation Nowcasting of Integrated Multi-satellitE Retrievals for GPM: A U-Net Convolutional LSTM Architecture

Reyhaneh Rahimi aDepartment of Civil Environmental and Geo-Engineering and the Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Reyhaneh Rahimi in
Current site
Google Scholar
PubMed
Close
,
Praveen Ravirathinam bDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Praveen Ravirathinam in
Current site
Google Scholar
PubMed
Close
,
Ardeshir Ebtehaj aDepartment of Civil Environmental and Geo-Engineering and the Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Ardeshir Ebtehaj in
Current site
Google Scholar
PubMed
Close
,
Ali Behrangi cDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
,
Jackson Tan dEarth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jackson Tan in
Current site
Google Scholar
PubMed
Close
, and
Vipin Kumar bDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Vipin Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a deep supervised learning architecture for 30-min global precipitation nowcasts with a 4-h lead time. The architecture follows a U-Net structure with convolutional long short-term memory (ConvLSTM) cells empowered by ConvLSTM-based skip connections to reduce information loss due to the pooling operation. The training uses data from the Integrated Multi-satellitE Retrievals for GPM (IMERG) and a few key drivers of precipitation from the Global Forecast System (GFS). The impacts of different training loss functions, including the mean-squared error (regression) and the focal loss (classification), on the quality of precipitation nowcasts are studied. The results indicate that the regression network performs well in capturing light precipitation (<1.6 mm h−1), while the classification network can outperform the regression counterpart for nowcasting of high-intensity precipitation (>8 mm h−1), in terms of the critical success index (CSI). It is uncovered that including the forecast variables can improve precipitation nowcasting, especially at longer lead times in both networks. Taking IMERG as a relative reference, a multiscale analysis, in terms of fractions skill score (FSS), shows that the nowcasting machine remains skillful for precipitation rate above 1 mm h−1 at the resolution of 10 km compared to 50 km for GFS. For precipitation rates greater than 4 mm h−1, only the classification network remains FSS skillful on scales greater than 50 km within a 2-h lead time.

Significance Statement

This study presents a deep neural network architecture for global precipitation nowcasting with a 4-h lead time, using sequences of past satellite precipitation data and simulations from a numerical weather prediction model. The results show that the nowcasting machine can improve short-term predictions of high-intensity global precipitation. The research outcomes will enable us to expand our understanding of how modern artificial intelligence can improve the predictability of extreme weather and benefit flood early warning systems for saving lives and properties.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ardeshir Ebtehaj, ebtehaj@umn.edu

Abstract

This paper presents a deep supervised learning architecture for 30-min global precipitation nowcasts with a 4-h lead time. The architecture follows a U-Net structure with convolutional long short-term memory (ConvLSTM) cells empowered by ConvLSTM-based skip connections to reduce information loss due to the pooling operation. The training uses data from the Integrated Multi-satellitE Retrievals for GPM (IMERG) and a few key drivers of precipitation from the Global Forecast System (GFS). The impacts of different training loss functions, including the mean-squared error (regression) and the focal loss (classification), on the quality of precipitation nowcasts are studied. The results indicate that the regression network performs well in capturing light precipitation (<1.6 mm h−1), while the classification network can outperform the regression counterpart for nowcasting of high-intensity precipitation (>8 mm h−1), in terms of the critical success index (CSI). It is uncovered that including the forecast variables can improve precipitation nowcasting, especially at longer lead times in both networks. Taking IMERG as a relative reference, a multiscale analysis, in terms of fractions skill score (FSS), shows that the nowcasting machine remains skillful for precipitation rate above 1 mm h−1 at the resolution of 10 km compared to 50 km for GFS. For precipitation rates greater than 4 mm h−1, only the classification network remains FSS skillful on scales greater than 50 km within a 2-h lead time.

Significance Statement

This study presents a deep neural network architecture for global precipitation nowcasting with a 4-h lead time, using sequences of past satellite precipitation data and simulations from a numerical weather prediction model. The results show that the nowcasting machine can improve short-term predictions of high-intensity global precipitation. The research outcomes will enable us to expand our understanding of how modern artificial intelligence can improve the predictability of extreme weather and benefit flood early warning systems for saving lives and properties.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ardeshir Ebtehaj, ebtehaj@umn.edu
Save
  • Abadi, M., and Coauthors, 2016: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv, 1603.04467v2, https://doi.org/10.48550/arXiv.1603.04467.

    • Search Google Scholar
    • Export Citation
  • Abreu, P., and Coauthors, 2012: Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS). Astropart. Phys., 35, 591607, https://doi.org/10.1016/j.astropartphys.2011.12.002.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Agrawal, S., L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey, 2019: Machine learning for precipitation nowcasting from radar images. arXiv, 1912.12132v1, https://doi.org/10.48550/arXiv.1912.12132.

  • Austin, G. L., and A. Bellon, 1974: The use of digital weather radar records for short-term precipitation forecasting. Quart. J. Roy. Meteor. Soc., 100, 658664, https://doi.org/10.1002/qj.49710042612.

    • Search Google Scholar
    • Export Citation
  • Ayzel, G., M. Heistermann, and T. Winterrath, 2019: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geosci. Model Dev., 12, 13871402, https://doi.org/10.5194/gmd-12-1387-2019.

    • Search Google Scholar
    • Export Citation
  • Ayzel, G., T. Scheffer, and M. Heistermann, 2020: RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev., 13, 26312644, https://doi.org/10.5194/gmd-13-2631-2020.

    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E. H., C. E. Pierce, and A. Seed, 2004: Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol., 288, 7491, https://doi.org/10.1016/j.jhydrol.2003.11.011.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., C. E. Pierce, and A. W. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132A, 21272155, https://doi.org/10.1256/qj.04.100.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and D. Jacques, 2020: Non-Gaussian deterministic assimilation of radar-derived precipitation accumulations. Mon. Wea. Rev., 148, 783808, https://doi.org/10.1175/MWR-D-19-0199.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Ehsani, M. R., A. Zarei, H. V. Gupta, K. Barnard, E. Lyons, and A. Behrangi, 2022: NowCasting-Nets: Representation learning to mitigate latency gap of satellite precipitation products using convolutional and recurrent neural networks. IEEE Trans. Geosci. Remote Sens., 60, 121, https://doi.org/10.1109/TGRS.2022.3158888.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798, https://doi.org/10.1175/2006JAS2044.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2021: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graves, A., 2013: Generating sequences with recurrent neural networks. arXiv, 1308.0850v5, https://doi.org/10.48550/arXiv.1308.0850.

  • Guilloteau, C., P. V. V. Le, and E. Foufoula-Georgiou, 2023: Constraining the multiscale structure of geophysical fields in machine-learning: The case of precipitation. IEEE Geosci. Remote Sens. Lett., 20, 15, https://doi.org/10.1109/LGRS.2023.3284278.

    • Search Google Scholar
    • Export Citation
  • Han, L., H. Liang, H. Chen, W. Zhang, and Y. Ge, 2021: Convective precipitation nowcasting using U-Net Model. IEEE Trans. Geosci. Remote Sens., 60, 18, https://doi.org/10.1109/TGRS.2021.3100847.

    • Search Google Scholar
    • Export Citation
  • Hochreiter, S., and J. Schmidhuber, 1997: Long short-term memory. Neural Comput., 9, 17351780, https://doi.org/10.1162/neco.1997.9.8.1735.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. Elsevier Science, 496 pp.

  • Huang, P.-C., Y.-L. Chen, Y.-S. Liou, B.-C. Tsai, C.-C. Wu, and W. H. Hsu, 2023: STAMINA (Spatial-Temporal Aligned Meteorological INformation Attention) and FPL (Focal Precip Loss): Advancements in precipitation nowcasting for heavy rainfall events. Proc. 32nd ACM Int. Conf. on Information and Knowledge Management, New York, NY, Association for Computing Machinery, 854–863.

  • Huffman, G. J., and Coauthors, 2020: Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement. V. Levizzani et al., Eds., Springer Nature, 343–353.

  • Hunke, E., W. Lipscomb, P. Jones, A. Turner, N. Jeffery, and S. Elliott, 2017: CICE, The Los Alamos sea ice model. Los Alamos National Lab, 76 pp.

  • Hwang, Y., A. J. Clark, V. Lakshmanan, and S. E. Koch, 2015: Improved nowcasts by blending extrapolation and model forecasts. Wea. Forecasting, 30, 12011217, https://doi.org/10.1175/WAF-D-15-0057.1.

    • Search Google Scholar
    • Export Citation
  • Imhoff, R. O., C. C. Brauer, K. J. Van Heeringen, R. Uijlenhoet, and A. H. Weerts, 2022: Large-sample evaluation of radar rainfall nowcasting for flood early warning. Water Resour. Res., 58, e2021WR031591, https://doi.org/10.1029/2021WR031591.

    • Search Google Scholar
    • Export Citation
  • Jin, Q., X. Zhang, X. Xiao, Y. Wang, G. Meng, S. Xiang, and C. Pan, 2023: Spatiotemporal inference network for precipitation nowcasting with multimodal fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 17, 12991314, https://doi.org/10.1109/JSTARS.2023.3321963.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley and Sons, 304 pp.

  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc. A379, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Search Google Scholar
    • Export Citation
  • Kim, S., A. Sharma, C. Wasko, and R. Nathan, 2022: Linking total precipitable water to precipitation extremes globally. Earth’s Future, 10, e2021EF002473, https://doi.org/10.1029/2021EF002473.

    • Search Google Scholar
    • Export Citation
  • Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv, 1412.6980v9, https://doi.org/10.48550/arXiv.1412.6980.

  • Kotsuki, S., K. Kurosawa, S. Otsuka, K. Terasaki, and T. Miyoshi, 2019: Global precipitation forecasts by merging extrapolation-based nowcast and numerical weather prediction with locally optimized weights. Wea. Forecasting, 34, 701714, https://doi.org/10.1175/WAF-D-18-0164.1.

    • Search Google Scholar
    • Export Citation
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. NIPS’12: Proc. 25th Int. Conf. on Neural Information Processing Systems – Volume 1, Lake Tahoe, NV, Curran Associates Inc., 1097–1105.

  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., T. Islam, Y. Sekimoto, C. Mattmann, and B. Wilson, 2020: Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data. PLOS ONE, 15, e0230114, https://doi.org/10.1371/journal.pone.0230114.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801, https://doi.org/10.1029/2005GL023451.

    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., and Z. Pu, 2020: Improving near-surface short-range weather forecasts using strongly coupled land–atmosphere data assimilation with GSI-EnKF. Mon. Wea. Rev., 148, 28632888, https://doi.org/10.1175/MWR-D-19-0370.1.

    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., A. M. Ebtehaj, R. L. Bras, A. N. Flores, and J. Wang, 2015: Dynamical precipitation downscaling for hydrologic applications using WRF 4D-Var data assimilation: Implications for GPM era. J. Hydrometeor., 16, 811829, https://doi.org/10.1175/JHM-D-14-0042.1.

    • Search Google Scholar
    • Export Citation
  • Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár, 2017: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell., 42, 318327, https://doi.org/10.1109/TPAMI.2018.2858826.

    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, https://doi.org/10.1175/MWR-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Liu, P., C. Li, Y. Wang, and Y. Fu, 2013: Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas as derived from TRMM PR. Sci. China Earth Sci., 56, 375385, https://doi.org/10.1007/s11430-012-4474-4.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Search Google Scholar
    • Export Citation
  • MacKay, D. J. C., 2003: Information Theory, Inference and Learning Algorithms. Cambridge University Press, 628 pp.

  • McCormac, J., A. Handa, A. J. Davison, and S. Leutenegger, 2017: SemanticFusion: Dense 3D semantic mapping with convolutional neural networks. 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), Singapore, Institute of Electrical and Electronics Engineers, 4628–4635, https://doi.org/10.1109/ICRA.2017.7989538.

  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Search Google Scholar
    • Export Citation
  • Mnih, V., and Coauthors, 2015: Human-level control through deep reinforcement learning. Nature, 518, 529533, https://doi.org/10.1038/nature14236.

    • Search Google Scholar
    • Export Citation
  • NCEP, 2021: The Global Forecast System (GFS) – Global Spectral Model (GSM). NOAA, accessed 1 February 2023, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation_spectralgfs.php.

  • Ning, L., F. P. Carli, A. M. Ebtehaj, E. Foufoula-Georgiou, and T. T. Georgiou, 2014: Coping with model error in variational data assimilation using optimal mass transport. Water Resour. Res., 50, 58175830, https://doi.org/10.1002/2013WR014966.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Otsuka, S., S. Kotsuki, and T. Miyoshi, 2016: Nowcasting with data assimilation: A case of global satellite mapping of precipitation. Wea. Forecasting, 31, 14091416, https://doi.org/10.1175/WAF-D-16-0039.1.

    • Search Google Scholar
    • Export Citation
  • Otsuka, S., S. Kotsuki, M. Ohhigashi, and T. Miyoshi, 2019: GSMaP RIKEN Nowcast: Global precipitation nowcasting with data assimilation. J. Meteor. Soc. Japan, 97, 10991117, https://doi.org/10.2151/jmsj.2019-061.

    • Search Google Scholar
    • Export Citation
  • Pan, X., Y. Lu, K. Zhao, H. Huang, M. Wang, and H. Chen, 2021: Improving nowcasting of convective development by incorporating polarimetric radar variables into a deep-learning model. Geophys. Res. Lett., 48, e2021GL095302, https://doi.org/10.1029/2021GL095302.

    • Search Google Scholar
    • Export Citation
  • Peng, H., F. Long, and C. Ding, 2005: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27, 12261238, https://doi.org/10.1109/TPAMI.2005.159.

    • Search Google Scholar
    • Export Citation
  • Pfreundschuh, S., I. Ingemarsson, P. Eriksson, D. A. Vila, and A. J. Calheiros, 2022: An improved near-real-time precipitation retrieval for Brazil. Atmos. Meas. Tech., 15, 69076933, https://doi.org/10.5194/amt-15-6907-2022.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Pulkkinen, S., D. Nerini, A. A. Pérez Hortal, C. Velasco-Forero, A. Seed, U. Germann, and L. Foresti, 2019: Pysteps: An open-source python library for probabilistic precipitation nowcasting (v1.0). Geosci. Model Dev., 12, 41854219, https://doi.org/10.5194/gmd-12-4185-2019.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Ravirathinam, P., R. Ghosh, K. Wang, K. Xuan, A. Khandelwal, H. Dugan, P. Hanson, and V. Kumar, 2023: Spatiotemporal Classification with limited labels using Constrained Clustering for large datasets. Proc. 2023 SIAM Int. Conf. on Data Mining (SDM), Minneapolis, MN, SIAM, 487–495.

  • Ravuri, S., and Coauthors, 2021: Skilful precipitation nowcasting using deep generative models of radar. Nature, 597, 672677, https://doi.org/10.1038/s41586-021-03854-z.

    • Search Google Scholar
    • Export Citation
  • Rawat, W., and Z. Wang, 2017: Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput., 29, 23522449, https://doi.org/10.1162/neco_a_00990.

    • Search Google Scholar
    • Export Citation
  • Reyniers, M., 2008: Quantitative Precipitation Forecasts Based on Radar Observations: Principles, Algorithms and Operational Systems. Royal Meteorological Institute of Belgium Publ. Scientifique et Technique 52, 62 pp.

  • Robin, Y., P. Yiou, and P. Naveau, 2017: Detecting changes in forced climate attractors with Wasserstein distance. Nonlinear Processes Geophys., 24, 393405, https://doi.org/10.5194/npg-24-393-2017.

    • Search Google Scholar
    • Export Citation
  • Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted InterventionMICCAI 2015, N. Navab et al., Eds., Springer International Publishing, 234–241.

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. NIPS’15: Proc. 28th Int. Conf. on Neural Information Processing Systems – Volume 1, Montreal, QC, MIT Press, 802–810.

  • Shi, X., Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, 2017: Deep learning for precipitation nowcasting: A benchmark and a new model. NIPS’17: Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, Curran Associates Inc., 5622–5632.

  • Skok, G., and N. Roberts, 2016: Analysis of fractions skill score properties for random precipitation fields and ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 142, 25992610, https://doi.org/10.1002/qj.2849.

    • Search Google Scholar
    • Export Citation
  • Sønderby, C. K., and Coauthors, 2020: MetNet: A neural weather model for precipitation forecasting. arXiv, 2003.12140v2, https://doi.org/10.48550/arXiv.2003.12140.

  • Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131A, 34393463, https://doi.org/10.1256/qj.05.149.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Sun, W., F. Su, and L. Wang, 2014: Improving deep neural networks with multilayer maxout networks. 2014 IEEE Visual Communications and Image Processing Conf., Valletta, Malta, Institute of Electrical and Electronics Engineers, 334–337.

  • Tamang, S. K., A. Ebtehaj, D. Zou, and G. Lerman, 2020: Regularized variational data assimilation for bias treatment using the Wasserstein metric. Quart. J. Roy. Meteor. Soc., 146, 23322346, https://doi.org/10.1002/qj.3794.

    • Search Google Scholar
    • Export Citation
  • Tamang, S. K., A. Ebtehaj, P. J. Van Leeuwen, D. Zou, and G. Lerman, 2021: Ensemble Riemannian data assimilation over the Wasserstein space. Nonlinear Processes Geophys., 28, 295309, https://doi.org/10.5194/npg-28-295-2021.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trebing, K., T. Stanczyk, and S. Mehrkanoon, 2021: SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recognit. Lett., 145, 178186, https://doi.org/10.1016/j.patrec.2021.01.036.

    • Search Google Scholar
    • Export Citation
  • Villani, C., 2009: Optimal Transport: Old and New. Vol. 338. Springer, 973 pp.

  • Vissio, G., V. Lembo, V. Lucarini, and M. Ghil, 2020: Evaluating the performance of climate models based on Wasserstein distance. Geophys. Res. Lett., 47, e2020GL089385, https://doi.org/10.1029/2020GL089385.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Vol. 92. Elsevier, 483 pp.

  • Wang, Y., M. Long, J. Wang, Z. Gao, and P. S. Yu, 2017: PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. NIPS’17: Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, Curran Associates Inc., 879–888.

  • Wang, Y., H. Wu, J. Zhang, Z. Gao, J. Wang, S. Y. Philip, and M. Long, 2022: PredRNN: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans. Pattern Anal. Mach. Intell., 45, 22082225, https://doi.org/10.1109/TPAMI.2022.3165153.

    • Search Google Scholar
    • Export Citation
  • Yang, L., Y. Fan, and N. Xu, 2019: Video instance segmentation. Proc. IEEE/CVF Int. Conf. on Computer Vision, Seoul, South Korea, Institute of Electrical and Electronics Engineers, 5188–5197.

  • Zhang, S. Q., M. Zupanski, A. Y. Hou, X. Lin, and S. H. Cheung, 2013: Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754772, https://doi.org/10.1175/MWR-D-12-00055.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Yang, B. Chen, and W. Huang, 2021: Operational precipitation forecast over China using the Weather Research and Forecasting (WRF) model at a gray-zone resolution: Impact of convection parameterization. Wea. Forecasting, 36, 915928, https://doi.org/10.1175/WAF-D-20-0210.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and K. Wang, 2021: Global precipitation system size. Environ. Res. Lett., 16, 054005, https://doi.org/10.1088/1748-9326/abf394.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Long, K. Chen, L. Xing, R. Jin, M. I. Jordan, and J. Wang, 2023: Skilful nowcasting of extreme precipitation with NowcastNet. Nature, 619, 526532, https://doi.org/10.1038/s41586-023-06184-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 458 139
Full Text Views 129 129 56
PDF Downloads 117 117 69