The Shrinking Great Salt Lake May Exacerbate Droughts by Reducing Local Precipitation: A Case Study

Hongping Gu aUtah Climate Center, Utah State University, Logan, Utah

Search for other papers by Hongping Gu in
Current site
Google Scholar
PubMed
Close
,
Wei Zhang bDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah
cEcology Center, Utah State University, Logan, Utah

Search for other papers by Wei Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8134-6908
, and
Robert Gillies aUtah Climate Center, Utah State University, Logan, Utah
bDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Robert Gillies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Great Salt Lake (GSL) is a shallow terminal lake located in northern Utah, United States. Over the years, the water extent of the GSL has undergone substantial reduction due to water diversions and a changing climate—in particular rising temperatures. However, the potential impacts of the shrinking GSL water body on the local hydroclimate system are poorly understood. In this study, we utilized the Weather Research and Forecasting Model, version 4.2, coupled with a lake model to simulate a series of high-resolution numerical experiments; these experiments aimed to assess the effect of varying lake areal extents on a storm event that occurred on 6 June 2007. The results revealed a systematic decline in the quantity of precipitation over the GSL and downwind regions with declining areal coverage. In the event of complete disappearance, the regional average precipitation would experience an approximate 50% reduction relative to its 2004 base lake extent; this decrease is principally attributed to a diminished water vapor flux and moist static energy (MSE) above the lake. The research underscores the consequences of a shrinking GSL, not just for precipitation delivery downstream but that of a negative feedback loop within the hydroclimatic system of the GSL basin, i.e., water flow reductions into the basin.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Zhang, w.zhang@usu.edu

Abstract

The Great Salt Lake (GSL) is a shallow terminal lake located in northern Utah, United States. Over the years, the water extent of the GSL has undergone substantial reduction due to water diversions and a changing climate—in particular rising temperatures. However, the potential impacts of the shrinking GSL water body on the local hydroclimate system are poorly understood. In this study, we utilized the Weather Research and Forecasting Model, version 4.2, coupled with a lake model to simulate a series of high-resolution numerical experiments; these experiments aimed to assess the effect of varying lake areal extents on a storm event that occurred on 6 June 2007. The results revealed a systematic decline in the quantity of precipitation over the GSL and downwind regions with declining areal coverage. In the event of complete disappearance, the regional average precipitation would experience an approximate 50% reduction relative to its 2004 base lake extent; this decrease is principally attributed to a diminished water vapor flux and moist static energy (MSE) above the lake. The research underscores the consequences of a shrinking GSL, not just for precipitation delivery downstream but that of a negative feedback loop within the hydroclimatic system of the GSL basin, i.e., water flow reductions into the basin.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Zhang, w.zhang@usu.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.6611 MB)
Save
  • Augustine, J. A., W. L. Woodley, R. W. Scott, and S. A. Changnon, 1994: Using geosynchronous satellite imagery to estimate summer-season rainfall over the Great Lakes. J. Great Lakes Res., 20, 683700, https://doi.org/10.1016/S0380-1330(94)71187-4.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., F. Giorgi, and S. W. Hostetler, 1993: Toward the simulation of the effects of the Great Lakes on regional climate. Mon. Wea. Rev., 121, 13731387, https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. Van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP v2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a Mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8, 181193, https://doi.org/10.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1984: Urban and lake effects on summer rainfall in the Chicago area. Phys. Geogr., 5 (1), 123, https://doi.org/10.1080/02723646.1984.10642240.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, and W. P. Gibson, 1997: The PRISM approach to mapping precipitation and temperature. Proc. 10th AMS Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farley Nicholls, J., and R. Toumi, 2014: On the lake effects of the Caspian Sea. Quart. J. Roy. Meteor. Soc., 140, 13991408, https://doi.org/10.1002/qj.2222.

    • Search Google Scholar
    • Export Citation
  • Fujisaki‐Manome, A., D. M. Wright, G. E. Mann, E. J. Anderson, P. Chu, C. Jablonowski, and S. G. Benjamin, 2022: Forecasting lake‐/sea‐effect snowstorms, advancement, and challenges. Wiley Interdiscip. Rev.: Water, 9, e1594, https://doi.org/10.1002/wat2.1594.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin, 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471483, https://doi.org/10.1007/s10584-013-0978-y.

    • Search Google Scholar
    • Export Citation
  • Gu, H., Z. Ma, and M. Li, 2016: Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos., 121, 88328848, https://doi.org/10.1002/2015JD024098.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative Mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211226, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-Effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Proc. 19th Conf. Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Lin, Y., K. E. Mitchell, E. Rogers, M. E. Baldwin, and G. J. DiMego, 1999: Test assimilations of the real-time, multi-sensor hourly precipitation analysis into the NCEP Eta model. Preprints, Eighth Conf. on Mesoscale Meteorology, Boulder, CO, Amer. Meteor. Soc., 341–344.

  • Long, Z., W. Perrie, J. Gyakum, D. Caya, and R. Laprise, 2007: Northern Lake impacts on local seasonal climate. J. Hydrometeor., 8, 881896, https://doi.org/10.1175/JHM591.1.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1966: Some effects of Lake Michigan upon squall lines and summertime convection. SMRP Res. Paper 57, 23 pp., https://swco-ir.tdl.org/items/2c40da20-a17c-4359-907a-27f5edf5e33d.

  • Mallard, M. S., C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden, 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 10851096, https://doi.org/10.5194/gmd-8-1085-2015.

    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake–effect snowstorm. Wea. Forecasting, 30, 136152, https://doi.org/10.1175/WAF-D-14-00060.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., and S. A. Clough, 1997: On the extension of rapid radiative transfer model to the shortwave region. Proc. Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX, ARM Program, 223–226.

  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, https://doi.org/10.1175/JCLI-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 2005: Lakes, effects on climate. Encyclopedia of World Climatology, J. E. Oliver, Ed., Springer, 444–445.

  • Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Search Google Scholar
    • Export Citation
  • Spero, T. L., C. G. Nolte, J. H. Bowden, M. S. Mallard, and J. A. Herwehe, 2016: The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF Model. J. Climate, 29, 839853, https://doi.org/10.1175/JCLI-D-15-0233.1.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and D. J. Onton, 2001: Multiscale analysis of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 12961317, https://doi.org/10.1175/1520-0493(2001)129<1296:MAOTDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, D. W., 1990: Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847–1987. Hydrobiologia, 197, 139146, https://doi.org/10.1007/BF00026946.

    • Search Google Scholar
    • Export Citation
  • Sun, X., L. Xie, F. Semazzi, and B. Liu, 2015: Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon. Wea. Rev., 143, 11791192, https://doi.org/10.1175/MWR-D-14-00049.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Ulrich, D. R., and A. R. Janiszeski, 2015: Simulations of lake-effect storms during the Ontario winter lake-effect systems project. 1 pp., https://dspace.sunyconnect.suny.edu/server/api/core/bitstreams/202d00ae-b933-4090-87a9-e30686c1fd91/content.

  • Williams, K., J. Chamberlain, C. Buontempo, and C. Bain, 2015: Regional climate model performance in the Lake Victoria basin. Climate Dyn., 44, 16991713, https://doi.org/10.1007/s00382-014-2201-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Coauthors, 2019: Numerical study on the climatic effect of the lake clusters over Tibetan Plateau in summer. Climate Dyn., 53, 52155236, https://doi.org/10.1007/s00382-019-04856-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Coauthors, 2020: Improvements of the coupled WRF-lake model over Lake Nam Co, central Tibetan plateau. Climate Dyn., 55, 27032724, https://doi.org/10.1007/s00382-020-05402-3.

    • Search Google Scholar
    • Export Citation
  • Yao, X., K. Yang, X. Zhou, Y. Wang, Lazhu, Y. Chen, and H. Lu, 2021: Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dyn., 56, 21132126, https://doi.org/10.1007/s00382-020-05575-x.

    • Search Google Scholar
    • Export Citation
  • Zan, Y., Y. Gao, Y. Jiang, Y. Pan, X. Li, and P. Su, 2022: The effects of lake level and area changes of Poyang Lake on the local weather. Atmosphere, 13, 1490, https://doi.org/10.3390/atmos13091490.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and R. Gillies, 2022: The role of anthropogenic forcing in western United States hydroclimate extremes. Geophys. Res. Lett., 49, e2022GL100659, https://doi.org/10.1029/2022GL100659.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., J. Jin, X. Liu, L. Tian, and Q. Zhang, 2018: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau. Atmos.–Ocean, 56, 230239, https://doi.org/10.1080/07055900.2017.1401524.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 824 824 100
Full Text Views 83 83 28
PDF Downloads 97 97 31