Improving Subseasonal Soil Moisture and Evaporative Stress Index Forecasts through Machine Learning: The Role of Initial Land State versus Dynamical Model Output

David J. Lorenz aCenter for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David J. Lorenz in
Current site
Google Scholar
PubMed
Close
,
Jason A. Otkin bSpace Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Benjamin F. Zaitchik cDepartment of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin F. Zaitchik in
Current site
Google Scholar
PubMed
Close
,
Christopher Hain dNASA Marshall Space Flight Center, Earth Science Branch, Huntsville, Alabama

Search for other papers by Christopher Hain in
Current site
Google Scholar
PubMed
Close
,
Thomas R. H. Holmes eHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Thomas R. H. Holmes in
Current site
Google Scholar
PubMed
Close
, and
Martha C. Anderson fHydrology and Remote Sensing Laboratory, USDA, Agricultural Research Service, Beltsville, Maryland

Search for other papers by Martha C. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of machine learning and other enhancements on statistical–dynamical forecasts of soil moisture (0–10 and 0–100 cm) and a reference evapotranspiration fraction [evaporative stress index (ESI)] on subseasonal time scales (15–28 days) are explored. The predictors include the current and past land surface conditions and dynamical model hindcasts from the Subseasonal to Seasonal Prediction project (S2S). When the methods are enhanced with machine learning and other improvements, the increases in skill are almost exclusively coming from predictors drawn from observations of current and past land surface states. This suggests that operational S2S flash drought forecasts should focus on optimizing use of information on current conditions rather than on integrating dynamically based forecasts, given the current state of knowledge. Nonlinear machine learning methods lead to improved skill over linear methods for soil moisture but not for ESI. Improvements for both soil moisture and ESI are realized by increasing the sample size by including surrounding grid points in training and increasing the number of predictors. In addition, all the improvements in the soil moisture forecasts predominantly impact soil moistening rather than soil drying—i.e., prediction of conditions moving away from drought rather than into drought—especially when the initial soil state is drier than normal. The physical reasons for the nonlinear machine learning improvements are also explored.

Significance Statement

Rapidly intensifying droughts pose extra challenges for predictability. Here, dynamical forecast model output is combined with nonlinear machine learning methods to improve forecasts of rapid changes in soil moisture and the evaporative stress index (ESI).

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu

Abstract

The effect of machine learning and other enhancements on statistical–dynamical forecasts of soil moisture (0–10 and 0–100 cm) and a reference evapotranspiration fraction [evaporative stress index (ESI)] on subseasonal time scales (15–28 days) are explored. The predictors include the current and past land surface conditions and dynamical model hindcasts from the Subseasonal to Seasonal Prediction project (S2S). When the methods are enhanced with machine learning and other improvements, the increases in skill are almost exclusively coming from predictors drawn from observations of current and past land surface states. This suggests that operational S2S flash drought forecasts should focus on optimizing use of information on current conditions rather than on integrating dynamically based forecasts, given the current state of knowledge. Nonlinear machine learning methods lead to improved skill over linear methods for soil moisture but not for ESI. Improvements for both soil moisture and ESI are realized by increasing the sample size by including surrounding grid points in training and increasing the number of predictors. In addition, all the improvements in the soil moisture forecasts predominantly impact soil moistening rather than soil drying—i.e., prediction of conditions moving away from drought rather than into drought—especially when the initial soil state is drier than normal. The physical reasons for the nonlinear machine learning improvements are also explored.

Significance Statement

Rapidly intensifying droughts pose extra challenges for predictability. Here, dynamical forecast model output is combined with nonlinear machine learning methods to improve forecasts of rapid changes in soil moisture and the evaporative stress index (ESI).

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu
Save
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, 333 pp., http://www.climasouth.eu/sites/default/files/FAO%2056.pdf.

  • Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, https://doi.org/10.1016/S0034-4257(96)00215-5.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007a: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007b: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112, D11112, https://doi.org/10.1029/2006JD007507.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 20252044, https://doi.org/10.1175/2010JCLI3812.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications. J. Hydrometeor., 14, 10351056, https://doi.org/10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., and Coauthors, 2016a: The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ., 174, 8299, https://doi.org/10.1016/j.rse.2015.11.034.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., and Coauthors, 2016b: Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic. Climate Res., 70, 215230, https://doi.org/10.3354/cr01411.

    • Search Google Scholar
    • Export Citation
  • Apley, D. W., and J. Zhu, 2020: Visualizing the effects of predictor variables in black box supervised learning models. J. Roy. Stat. Soc., 82B, 10591086, https://doi.org/10.1111/rssb.12377.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, https://doi.org/10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brust, C., J. S. Kimball, M. P. Maneta, K. Jencso, and R. H. Reichle, 2021: DroughtCast: A machine learning forecast of the United States drought monitor. Front. Big Data, 4, 773478, https://doi.org/10.3389/fdata.2021.773478.

    • Search Google Scholar
    • Export Citation
  • Cao, J., H. Wang, J. Li, Q. Tian, and D. Niyogi, 2022: Improving the forecasting of winter wheat yields in northern China with machine learning–dynamical hybrid subseasonal-to-seasonal ensemble prediction. Remote Sens., 14, 1707, https://doi.org/10.3390/rs14071707.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and Coauthors, 2015: Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens., 103, 727, https://doi.org/10.1016/j.isprsjprs.2014.09.002.

    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Guestrin, 2016: XGBoost: A scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD), San Francisco, CA, Association for Computing Machinery, 785–794, https://doi.org/10.1145/2939672.2939785.

  • Christian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019: A methodology for flash drought identification: Application of flash drought frequency across the United States. J. Hydrometeor., 20, 833846, https://doi.org/10.1175/JHM-D-18-0198.1.

    • Search Google Scholar
    • Export Citation
  • Cortes, C., and V. Vapnik, 1995: Support-vector networks. Mach. Learn., 20, 273297, https://doi.org/10.1007/BF00994018.

  • DeAngelis, A. M., H. Wang, R. D. Koster, S. D. Schubert, Y. Chang, and J. Marshak, 2020: Prediction skill of the 2012 U.S. Great Plains flash drought in subseasonal experiment (SubX) models. J. Climate, 33, 62296253, https://doi.org/10.1175/JCLI-D-19-0863.1.

    • Search Google Scholar
    • Export Citation
  • Deo, R. C., and M. Şahin, 2015: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos. Res., 153, 512525, https://doi.org/10.1016/j.atmosres.2014.10.016.

    • Search Google Scholar
    • Export Citation
  • Dikshit, A., and B. Pradhan, 2021: Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci. Total Environ., 801, 149797, https://doi.org/10.1016/j.scitotenv.2021.149797.

    • Search Google Scholar
    • Export Citation
  • Dikshit, A., B. Pradhan, and A. M. Alamri, 2020: Temporal hydrological drought index forecasting for New South Wales, Australia using machine learning approaches. Atmosphere, 11, 585, https://doi.org/10.3390/atmos11060585.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National centers for environmental prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fernández-Delgado, M., M. S. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and M. Febrero-Bande, 2019: An extensive experimental survey of regression methods. Neural Networks, 111, 1134, https://doi.org/10.1016/j.neunet.2018.12.010.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteor., 247, 414423, https://doi.org/10.1016/j.agrformet.2017.08.031.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., D. B. McRoberts, S. M. Quiring, and R. E. Hall, 2015: On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett., 42, 97909798, https://doi.org/10.1002/2015GL066600.

    • Search Google Scholar
    • Export Citation
  • Franc, V., V. Hlaváč, and M. Navara, 2005: Sequential coordinate-wise algorithm for the non-negative least squares problem. Computer Analysis of Images and Patterns, A. Gagalowicz and W. Phillips, Eds., Springer, 407–414.

  • Friedman, J. H., 1991: Multivariate adaptive regression splines. Ann. Stat., 19 (1), 167, https://doi.org/10.1214/aos/1176347963.

  • Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Stat., 29, 11891232, https://doi.org/10.1214/aos/1013203451.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., and R. Tibshirani, 1986: Generalized additive models. Stat. Sci., 1, 297310, https://doi.org/10.1214/ss/1177013604.

  • He, S., X. Li, T. DelSole, P. Ravikumar, and A. Banerjee, 2021: Sub-seasonal climate forecasting via machine learning: Challenges, analysis, and advances. Proc. Conf. AAAI Artif. Intell., 35, 169177, https://doi.org/10.1609/aaai.v35i1.16090.

    • Search Google Scholar
    • Export Citation
  • He, S., X. Li, L. Trenary, B. A. Cash, T. DelSole, and A. Banerjee, 2022: Learning and dynamical models for sub-seasonal climate forecasting: Comparison and collaboration. Proc. Conf. AAAI Artif. Intell., 36, 44954503, https://doi.org/10.1609/aaai.v36i4.20372.

    • Search Google Scholar
    • Export Citation
  • Hochreiter, S., and J. Schmidhuber, 1997: Long short-term memory. Neural Comput., 9, 17351780, https://doi.org/10.1162/neco.1997.9.8.1735.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., T. W. Ford, M. Woloszyn, J. A. Otkin, and J. Eischeid, 2021: Characteristics and predictability of midwestern United States drought. J. Hydrometeor., 22, 30873105, https://doi.org/10.1175/JHM-D-21-0052.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., K. G. Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009: The development and evaluation of a soil moisture index. Int. J. Climatol., 29, 747759, https://doi.org/10.1002/joc.1749.

    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., M. Svoboda, B. Wardlow, K. Hubbard, M. Hayes, and T. Arkebauer, 2014: Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agric. For. Meteor., 191, 111, https://doi.org/10.1016/j.agrformet.2014.02.001.

    • Search Google Scholar
    • Export Citation
  • Hwang, J., P. Orenstein, J. Cohen, K. Pfeiffer, and L. Mackey, 2019: Improving subseasonal forecasting in the western U.S. with machine learning. Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Anchorage, AK, Association for Computing Machinery, 2325–2335, https://doi.org/10.1145/3292500.3330674.

  • Jalali, A., P. Ravikumar, and S. Sanghavi, 2013: A dirty model for multiple sparse regression. IEEE Trans. Inf. Theory, 59, 79477968, https://doi.org/10.1109/TIT.2013.2280272.

    • Search Google Scholar
    • Export Citation
  • Januschowski, T., Y. Wang, K. Torkkola, T. Erkkilä, H. Hasson, and J. Gasthaus, 2022: Forecasting with trees. Int. J. Forecasting, 38, 14731481, https://doi.org/10.1016/j.ijforecast.2021.10.004.

    • Search Google Scholar
    • Export Citation
  • Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, 2017: Lightgbm: A highly efficient gradient boosting decision tree. NIPS’17: Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach CA, Curran Associates Inc., 3149–3157, https://dl.acm.org/doi/10.5555/3294996.3295074.

  • Khan, N., D. A. Sachindra, S. Shahid, K. Ahmed, M. S. Shiru, and N. Nawaz, 2020: Prediction of droughts over Pakistan using machine learning algorithms. Adv. Water Resour., 139, 103562, https://doi.org/10.1016/j.advwatres.2020.103562.

    • Search Google Scholar
    • Export Citation
  • Lawson, C. L., and R. J. Hanson, 1995: Solving Least Squares Problems. Society for Industrial and Applied Mathematics, 337 pp.

  • Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, M. C. Anderson, and Y. Zhong, 2017: Predicting the U.S. drought monitor using precipitation, soil moisture, and evapotranspiration anomalies. Part II: Intraseasonal drought intensification forecasts. J. Hydrometeor., 18, 19631982, https://doi.org/10.1175/JHM-D-16-0067.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, and Y. Zhong, 2018: Forecasting rapid drought intensification using the Climate Forecast System (CFS). J. Geophys. Res. Atmos., 123, 83658373, https://doi.org/10.1029/2018JD028880.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., J. A. Otkin, B. Zaitchik, C. Hain, and M. C. Anderson, 2021: Predicting rapid changes in evaporative stress index (ESI) and soil moisture anomalies over the continental United States. J. Hydrometeor., 22, 30173036, https://doi.org/10.1175/JHM-D-20-0289.1.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, N., 2013: Sign-constrained least squares estimation for high-dimensional regression. Electron. J. Stat., 7, 16071631, https://doi.org/10.1214/13-EJS818.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining flash drought development using the thermal infrared based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, https://doi.org/10.1175/JHM-D-13-0110.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2015a: Using temporal changes in drought indices to generate probabilistic drought intensification forecasts. J. Hydrometeor., 16, 88105, https://doi.org/10.1175/JHM-D-14-0064.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Shafer, M. Svoboda, B. Wardlow, M. C. Anderson, C. Hain, and J. Basara, 2015b: Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bull. Amer. Meteor. Soc., 96, 10731078, https://doi.org/10.1175/BAMS-D-14-00219.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018a: Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Y. Zhong, D. Lorenz, M. C. Anderson, and C. Hain, 2018b: Exploring seasonal and regional relationships between the evaporative stress index and surface weather and soil moisture anomalies across the United States. Hydrol. Earth Syst. Sci., 22, 53735386, https://doi.org/10.5194/hess-22-5373-2018.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2022: Getting ahead of flash drought: From early warning to early action. Bull. Amer. Meteor. Soc., 103, E2188E2202, https://doi.org/10.1175/BAMS-D-21-0288.1.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Servén, D., and C. Brummitt, 2018: pyGAM: Generalized additive models in Python. Zenodo, accessed 20 July 2021, https://doi.org/10.5281/zenodo.1208723.

  • Slater, L., and Coauthors, 2023: Hybrid forecasting: Blending climate predictions with AI models. Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023.

    • Search Google Scholar
    • Export Citation
  • Slawski, M., and M. Hein, 2013: Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Stat., 7, 30043056, https://doi.org/10.1214/13-EJS868.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc., 58A, 267288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Z. Jia, Z. Yin, F. Liu, G. Lu, and J. Zheng, 2021: Improving the accuracy of subseasonal forecasting of China precipitation with a machine learning approach. Front. Earth Sci., 9, 659310, https://doi.org/10.3389/feart.2021.659310.

    • Search Google Scholar
    • Export Citation
  • Wei, H., Y. Xia, K. E. Mitchell, and M. B. Ek, 2013: Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Processes, 27, 297303, https://doi.org/10.1002/hyp.9214.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, H. Wei, and J. Meng, 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, https://doi.org/10.1002/hyp.8240.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation of the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., and Y. Wang, 2021: The diagnosis about spatiotemporal characteristics and driving factors of flash drought and its prediction over typical humid and semiarid basins in China. J. Hydrometeor., 22, 27832798, https://doi.org/10.1175/JHM-D-21-0062.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 595 595 58
Full Text Views 103 103 36
PDF Downloads 116 116 43