Improving Hurricane Intensity and Streamflow Forecasts in Coupled Hydrometeorological Simulations by Analyzing Precipitation and Boundary Layer Schemes

Md Murad Hossain Khondaker aDepartment of Civil and Environmental Engineering, University of Houston, Houston, Texas

Search for other papers by Md Murad Hossain Khondaker in
Current site
Google Scholar
PubMed
Close
and
Mostafa Momen aDepartment of Civil and Environmental Engineering, University of Houston, Houston, Texas

Search for other papers by Mostafa Momen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7401-7604
Restricted access

Abstract

Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts.

Significance Statement

Despite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mostafa Momen, mmomen@uh.edu

Abstract

Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts.

Significance Statement

Despite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mostafa Momen, mmomen@uh.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.9768 MB)
Save
  • Abbaszadeh, P., K. Gavahi, and H. Moradkhani, 2020: Multivariate remotely sensed and in-situ data assimilation for enhancing community WRF-Hydro model forecasting. Adv. Water Resour., 145, 103721, https://doi.org/10.1016/j.advwatres.2020.103721.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., and Coauthors, 2018: Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for central Europe. J. Hydrometeor., 19, 10071025, https://doi.org/10.1175/JHM-D-17-0042.1.

    • Search Google Scholar
    • Export Citation
  • Arolla, S. K., and P. A. Durbin, 2014: A rotation/curvature correction for turbulence models for applied CFD. Prog. Comput. Fluid Dyn. Int. J., 14, 341351, https://doi.org/10.1504/PCFD.2014.065472.

    • Search Google Scholar
    • Export Citation
  • Bao, D., Z. G. Xue, J. C. Warner, M. Moulton, D. Yin, C. A. Hegermiller, J. B. Zambon, and R. He, 2022: A numerical investigation of hurricane Florence-induced compound flooding in the cape fear estuary using a dynamically coupled hydrological-ocean model. J. Adv. Model. Earth Syst., 14, e2022MS003131, https://doi.org/10.1029/2022MS003131.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: National hurricane center tropical cyclone report, Hurricane Harvey. NOAA Tech. Rep. AL092017, 77 pp., https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

  • Blake, E. S., C. W. Landsea, and E. J. Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 49 pp., https://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.

  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2021: National hurricane center tropical cyclone report, Hurricane Irma. NOAA Tech. Rep. AL112017, 111 pp., https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

  • Cazalbou, J.-B., P. Chassaing, G. Dufour, and X. Carbonneau, 2005: Two-equation modeling of turbulent rotating flows. Phys. Fluids, 17, 055110, https://doi.org/10.1063/1.1920630.

    • Search Google Scholar
    • Export Citation
  • Cerbelaud, A., J. Lefèvre, P. Genthon, and C. Menkes, 2022: Assessment of the WRF-Hydro uncoupled hydro-meteorological model on flashy watersheds of the Grande Terre tropical island of New Caledonia (South-West Pacific). J. Hydrol., 40, 101003, https://doi.org/10.1016/j.ejrh.2022.101003.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., and L. E. Newman, 2000: Climatological relationships between tropical cyclones and rainfall. Mon. Wea. Rev., 128, 33293336, https://doi.org/10.1175/1520-0493(2000)128<3329:CRBTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, L., K. Zhang, Z.-L. Yang, J. Wang, P. Lin, J. Liang, Z. Li, and Z. Gu, 2021: Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. J. Hydrol., 592, 125814, https://doi.org/10.1016/j.jhydrol.2020.125814.

    • Search Google Scholar
    • Export Citation
  • Cheikh, M. I., and M. Momen, 2020: The interacting effects of storm surge intensification and sea-level rise on coastal resiliency: A high-resolution turbulence resolving case study. Environ. Res. Commun., 2, 115002, https://doi.org/10.1088/2515-7620/abc39e.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and Coauthors, 2021: A comprehensive flood inundation mapping for Hurricane Harvey using an integrated hydrological and hydraulic model. J. Hydrometeor., 22, 17131726, https://doi.org/10.1175/JHM-D-20-0218.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., 2022: How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large‐eddy simulations. J. Adv. Model. Earth Syst., 14, e2022MS003088, https://doi.org/10.1029/2022MS003088.

    • Search Google Scholar
    • Export Citation
  • Choudhury, D., and S. Das, 2017: The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model. J. Earth Syst. Sci., 126, 57, https://doi.org/10.1007/s12040-017-0830-2.

    • Search Google Scholar
    • Export Citation
  • Coelho, G. d. A., C. M. Ferreira, and J. L. Kinter III, 2022: Multiscale and multi event evaluation of short-range real-time flood forecasting in large metropolitan areas. J. Hydrol., 612, 128212, https://doi.org/10.1016/j.jhydrol.2022.128212.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Du, J., 2023: NCEP/EMC 4KM gridded data (GRIB) stage IV data version 1.0. UCAR/NCAR – Earth Observing Laboratory, accessed 19 November 2023, https://doi.org/10.5065/D6PG1QDD.

  • Durbin, P., 2011: Review: Adapting scalar turbulence closure models for rotation and curvature. J. Fluids Eng., 133, 061205, https://doi.org/10.1115/1.4004150.

    • Search Google Scholar
    • Export Citation
  • El Gharamti, M., J. L. McCreight, S. J. Noh, T. J. Hoar, A. Rafieeinasab, and B. K. Johnson, 2021: Ensemble streamflow data assimilation using WRF-Hydro and DART: Novel localization and inflation techniques applied to hurricane Florence flooding. Hydrol. Earth Syst. Sci., 25, 53155336, https://doi.org/10.5194/hess-25-5315-2021.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Will global warming make hurricane forecasting more difficult? Bull. Amer. Meteor. Soc., 98, 495501, https://doi.org/10.1175/BAMS-D-16-0134.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, https://doi.org/10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Gao, Q., Q. Li, and Y. Dai, 2020: Characteristics of the outer rainband stratiform sector in numerically simulated tropical cyclones: Lower-layer shear versus upper-layer shear. Adv. Atmos. Sci., 37, 399419, https://doi.org/10.1007/s00376-020-9202-y.

    • Search Google Scholar
    • Export Citation
  • Givati, A., D. Gochis, T. Rummler, and H. Kunstmann, 2016: Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the Mediterranean region. Hydrology, 3, 19, https://doi.org/10.3390/hydrology3020019.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, 2020: The WRF-hydro modeling system technical description, version 5.2.0. NCAR Tech. Note, 108 pp., https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf.

  • Gopalakrishnan, S., A. Hazelton, and J. A. Zhang, 2021: Improving hurricane boundary layer parameterization scheme based on observations. Earth Space Sci., 8, e2020EA001422, https://doi.org/10.1029/2020EA001422.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF System. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S.-H. Yoo, 2015: NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4, 26 pp, https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Jackson, E. K., W. Roberts, B. Nelsen, G. P. Williams, E. J. Nelson, and D. P. Ames, 2019: Introductory overview: Error metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption. Environ. Modell. Software, 119, 3248, https://doi.org/10.1016/j.envsoft.2019.05.001.

    • Search Google Scholar
    • Export Citation
  • Jafarzadegan, K., A. Alipour, K. Gavahi, H. Moftakhari, and H. Moradkhani, 2021: Toward improved river boundary conditioning for simulation of extreme floods. Adv. Water Resour., 158, 104059, https://doi.org/10.1016/j.advwatres.2021.104059.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeworrek, J., G. West, and R. Stull, 2019: Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Wea. Forecasting, 34, 10971115, https://doi.org/10.1175/WAF-D-18-0178.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanada, S., A. Wada, M. Nakano, and T. Kato, 2012: Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. J. Geophys. Res., 117, D03107, https://doi.org/10.1029/2011JD016582.

    • Search Google Scholar
    • Export Citation
  • Katsafados, P., G. Varlas, A. Papadopoulos, C. Spyrou, and G. Korres, 2018: Assessing the implicit rain impact on sea state during Hurricane Sandy (2012). Geophys. Res. Lett., 45, 12 01512 022, https://doi.org/10.1029/2018GL078673.

    • Search Google Scholar
    • Export Citation
  • Khondaker, M. H., and M. Momen, 2024: Improving hurricane intensity and streamflow forecasts in coupled hydro-meteorological simulations by analyzing precipitation and boundary layer schemes, Dataset, version 1. Harvard Dataverse, accessed 29 July 2024, https://doi.org/10.7910/DVN/PVZ9C7.

  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411260, https://doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kilicarslan, B. M., I. Yucel, H. Pilatin, E. Duzenli, and M. T. Yilmaz, 2021: Improving WRF-Hydro runoff simulations of heavy floods through the sea surface temperature fields with higher spatio-temporal resolution. Hydrol. Processes, 35, e14338, https://doi.org/10.1002/hyp.14338.

    • Search Google Scholar
    • Export Citation
  • Kim, K. Y., W.-Y. Wu, E. Kutanoglu, J. J. Hasenbein, and Z.-L. Yang, 2021: Hurricane scenario generation for uncertainty modeling of coastal and inland flooding. Front. Climate, 3, 610680, https://doi.org/10.3389/fclim.2021.610680.

    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., J. R. Rhome Jamie, and D. P. Brown, 2023: Tropical cyclone report Hurricane Katrina, 23–30 August 2005, 43 pp., https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knoben, W. J. M., J. E. Freer, and R. A. Woods, 2019: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci., 23, 43234331, https://doi.org/10.5194/hess-23-4323-2019.

    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., H. Gupta, C. L. Castro, D. J. Gochis, D. Yates, A. Dugger, D. Goodrich, and P. Hazenberg, 2019: Enhancing the structure of the WRF-Hydro hydrologic model for semiarid environments. J. Hydrometeor., 20, 691714, https://doi.org/10.1175/JHM-D-18-0064.1.

    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, and P. Hazenberg, 2020: Effects of lateral flow on the convective environment in a coupled hydrometeorological modeling system in a semiarid environment. J. Hydrometeor., 21, 615642, https://doi.org/10.1175/JHM-D-19-0100.1.

    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., and Coauthors, 2021: Evaluation of NOAA national water model parameter calibration in semi-arid environments prone to channel infiltration. J. Hydrometeor., 22, 29392969, https://doi.org/10.1175/JHM-D-20-0198.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-resolution numerical simulation of urban heat islands. Environ. Res. Lett., 9, 055001, https://doi.org/10.1088/1748-9326/9/5/055001.

    • Search Google Scholar
    • Export Citation
  • Li, M., J. A. Zhang, L. Matak, and M. Momen, 2023: The impacts of adjusting momentum roughness length on strong and weak hurricane forecasts: A comprehensive analysis of weather simulations and observations. Mon. Wea. Rev., 151, 12871302, https://doi.org/10.1175/MWR-D-22-0191.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 9971020, https://doi.org/10.1175/2011JAS3690.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203227, https://doi.org/10.1175/JAS-D-16-0123.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., and C. Chen, 2022: Air-sea interaction processes during hurricane Sandy: Coupled WRF-FVCOM model simulations. Prog. Oceanogr., 206, 102855, https://doi.org/10.1016/j.pocean.2022.102855.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2021: Vertical eddy diffusivity parameterization based on a large‐eddy simulation and its impact on prediction of hurricane landfall. Geophys. Res. Lett., 48, e2020GL090703, https://doi.org/10.1029/2020GL090703.

    • Search Google Scholar
    • Export Citation
  • Li, Z., J. Peng, L. Zhang, and J. Guan, 2024: Exploring the differences in kinetic energy spectra between the NCEP FNL and ERA5 datasets. J. Atmos. Sci., 81, 363380, https://doi.org/10.1175/JAS-D-23-0043.1.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., L. J. Hopper Jr., Z. L. Yang, M. Lenz, and J. W. Zeitler, 2018a: Insights into hydrometeorological factors constraining flood prediction skill during the May and October 2015 Texas hill country flood events. J. Hydrometeor., 19, 13391361, https://doi.org/10.1175/JHM-D-18-0038.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., Z.-L. Yang, D. J. Gochis, W. Yu, D. R. Maidment, M. A. Somos-Valenzuela, and C. H. David, 2018b: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation. Environ. Modell. Software, 107, 111, https://doi.org/10.1016/j.envsoft.2018.05.018.

    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and T. R. Knutson, 2019: Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate Atmos. Sci., 2, 38, https://doi.org/10.1038/s41612-019-0095-3.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., V. Chandrasekar, H. Chen, and R. Cifelli, 2021: Quantifying the potential of AQPI gap-filling radar network for streamflow simulation through a WRF-Hydro experiment. J. Hydrometeor., 22, 18691882, https://doi.org/10.1175/JHM-D-20-0122.1.

    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 2017: Conceptual framework for the national flood interoperability experiment. J. Amer. Water Resour. Assoc., 53, 245257, https://doi.org/10.1111/1752-1688.12474.

    • Search Google Scholar
    • Export Citation
  • Mascaro, G., A. Hussein, A. Dugger, and D. J. Gochis, 2023: Process‐based calibration of WRF‐Hydro in a mountainous basin in southwestern U.S. J. Amer. Water Resour. Assoc., 59, 4970, https://doi.org/10.1111/1752-1688.13076.

    • Search Google Scholar
    • Export Citation
  • Matak, L., and M. Momen, 2023: The role of vertical diffusion parameterizations in the dynamics and accuracy of simulated intensifying hurricanes. Bound.-Layer Meteor., 188, 389418, https://doi.org/10.1007/s10546-023-00818-w.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s. Nat. Geosci., 9, 753757, https://doi.org/10.1038/ngeo2792.

    • Search Google Scholar
    • Export Citation
  • Ming, J., J. A. Zhang, X. Li, Z. Pu, and M. Momen, 2023: Observational estimates of turbulence parameters in the atmospheric surface layer of landfalling tropical cyclones. J. Geophys. Res. Atmos., 128, e2022JD037768, https://doi.org/10.1029/2022JD037768.

    • Search Google Scholar
    • Export Citation
  • Momen, M., 2022: Baroclinicity in stable atmospheric boundary layers: Characterizing turbulence structures and collapsing wind profiles via reduced models and large‐eddy simulations. Quart. J. Roy. Meteor. Soc., 148, 7696, https://doi.org/10.1002/qj.4193.

    • Search Google Scholar
    • Export Citation
  • Momen, M., and E. Bou-Zeid, 2016: Large-eddy simulations and damped-oscillator models of the unsteady Ekman boundary layer. J. Atmos. Sci., 73, 2540, https://doi.org/10.1175/JAS-D-15-0038.1.

    • Search Google Scholar
    • Export Citation
  • Momen, M., and E. Bou-Zeid, 2017: Analytical reduced models for the non-stationary diabatic atmospheric boundary layer. Bound.-Layer Meteor., 164, 383399, https://doi.org/10.1007/s10546-017-0247-0.

    • Search Google Scholar
    • Export Citation
  • Momen, M., E. Bou-Zeid, M. B. Parlange, and M. Giometto, 2018: Modulation of mean wind and turbulence in the atmospheric boundary layer by baroclinicity. J. Atmos. Sci., 75, 37973821, https://doi.org/10.1175/JAS-D-18-0159.1.

    • Search Google Scholar
    • Export Citation
  • Momen, M., M. B. Parlange, and M. G. Giometto, 2021: Scrambling and reorientation of classical atmospheric boundary layer turbulence in hurricane winds. Geophys. Res. Lett., 48, e2020GL091695, https://doi.org/10.1029/2020GL091695.

    • Search Google Scholar
    • Export Citation
  • Nasrollahi, N., A. Aghakouchak, J. Li, X. Gao, K. Hsu, and S. Sorooshian, 2012: Assessing the impacts of different WRF precipitation physics in hurricane simulations. Wea. Forecasting, 27, 10031016, https://doi.org/10.1175/WAF-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U. S. Department of Commerce, 2015: NCEP GFS 0.25 degree global forecast grids historical archive, https://doi.org/10.5065/D65D8PWK.

  • Nielsen-Gammon, J. W., F. Zhang, A. M. Odins, and B. Myoung, 2005: Extreme rainfall in Texas: Patterns and predictability. Phys. Geogr., 26, 340364, https://doi.org/10.2747/0272-3646.26.5.340.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2022: U.S. billion-dollar weather and climate disasters, https://doi.org/10.25921/stkw-7w73.

  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. McNoldy, and J. Yunge, 2021a: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part I: Model initialization and simulation validation. Mon. Wea. Rev., 149, 679695, https://doi.org/10.1175/MWR-D-20-0199.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. Mcnoldy, J. Yunge, F. J. Masters, and I. M. Giammanco, 2021b: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part II: Surface winds, inflow angles, and boundary layer profiles. Mon. Wea. Rev., 149, 697713, https://doi.org/10.1175/MWR-D-20-0201.1.

    • Search Google Scholar
    • Export Citation
  • Pal, S., F. Dominguez, M. E. Dillon, J. Alvarez, C. M. Garcia, S. W. Nesbitt, and D. Gochis, 2021: Hydrometeorological observations and modeling of an extreme rainfall event using WRF and WRF-Hydro during the RELAMPAGO field campaign in Argentina. J. Hydrometeor., 22, 331351, https://doi.org/10.1175/JHM-D-20-0133.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., M. F. Wehner, and C. M. Zarzycki, 2022: Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun., 13, 1905, https://doi.org/10.1038/s41467-022-29379-1.

    • Search Google Scholar
    • Export Citation
  • Romdhani, O., J. A. Zhang, and M. Momen, 2022: Characterizing the impacts of turbulence closures on real hurricane forecasts: A comprehensive joint assessment of grid resolution, horizontal turbulence models, and horizontal mixing length. J. Adv. Model. Earth Syst., 14, e2021MS002796, https://doi.org/10.1029/2021MS002796.

    • Search Google Scholar
    • Export Citation
  • Romdhani, O., L. Matak, and M. Momen, 2024: Hurricane track trends and environmental flow patterns under surface temperature changes and roughness length variations. Wea. Climate Extremes, 43, 100645, https://doi.org/10.1016/j.wace.2024.100645.

    • Search Google Scholar
    • Export Citation
  • Rudisill, W., K. E. Kaiser, and A. N. Flores, 2022: Evaluating long-term one-way atmosphere-hydrology simulations and the impacts of two-way coupling in four mountain watersheds. Hydrol. Processes, 36, e14578, https://doi.org/10.1002/hyp.14578.

    • Search Google Scholar
    • Export Citation
  • Rummler, T., A. Wagner, J. Arnault, and H. Kunstmann, 2022: Lateral terrestrial water fluxes in the LSM of WRF-Hydro: Benefits of a 2D groundwater representation. Hydrol. Processes, 36, e14510, https://doi.org/10.1002/hyp.14510.

    • Search Google Scholar
    • Export Citation
  • Sabet, F., Y. R. Yi, L. Thomas, and M. Momen, 2022: Characterizing mean and turbulent structures of hurricane winds via large-eddy simulations. CTR Proc. of the Summer Program 2022, Stanford, CA, National Science Foundation, 311–322, https://web.stanford.edu/group/ctr/ctrsp22/v01_Sabet.pdf.

  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. N. Yates, and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 16931715, https://doi.org/10.1002/2015MS000510.

    • Search Google Scholar
    • Export Citation
  • Senatore, A., L. Furnari, and G. Mendicino, 2020: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments’ hydrological responses to heavy precipitation. Hydrol. Earth Syst. Sci., 24, 269291, https://doi.org/10.5194/hess-24-269-2020.

    • Search Google Scholar
    • Export Citation
  • Shastry, A., R. Egbert, F. Aristizabal, C. Luo, C.-W. Yu, and S. Praskievicz, 2019: Using steady-state backwater analysis to predict inundated area from national water model streamflow simulations. J. Amer. Water Resour. Assoc., 55, 940951, https://doi.org/10.1111/1752-1688.12785.

    • Search Google Scholar
    • Export Citation
  • Shearer, E. J., V. Afzali Gorooh, P. Nguyen, K.-L. Hsu, and S. Sorooshian, 2022: Unveiling four decades of intensifying precipitation from tropical cyclones using satellite measurements. Sci. Rep., 12, 13569, https://doi.org/10.1038/s41598-022-17640-y.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4.3. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Smith, A. B., 2021: 2021 U.S. billion-dollar weather and climate disasters in historical context-hazard and socioeconomic risk mapping. 34 pp., https://www.ncei.noaa.gov/monitoring-content/billions/docs/billions-risk-mapping-2021-ams-forum.pdf.

  • Tang, J., J. A. Zhang, S. D. Aberson, F. D. Marks, and X. Lei, 2018: Multilevel tower observations of vertical eddy diffusivity and mixing length in the tropical cyclone boundary layer during landfalls. J. Atmos. Sci., 75, 31593168, https://doi.org/10.1175/JAS-D-17-0353.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tien, D. D., T. Ngo-Duc, H. T. Mai, and C. Kieu, 2013: A study of the connection between tropical cyclone track and intensity errors in the WRF model. Meteor. Atmos. Phys., 122, 5564, https://doi.org/10.1007/s00703-013-0278-0.

    • Search Google Scholar
    • Export Citation
  • Tijerina-Kreuzer, D., L. Condon, K. FitzGerald, A. Dugger, M. M. O’Neill, K. Sampson, D. Gochis, and R. Maxwell, 2021: Continental hydrologic intercomparison project, phase 1: A large-scale hydrologic model comparison over the continental United States. Water Resour. Res., 57, e2020WR028931, https://doi.org/10.1029/2020WR028931.

    • Search Google Scholar
    • Export Citation
  • Tritton, D. J., 1992: Stabilization and destabilization of turbulent shear flow in a rotating fluid. J. Fluid Mech., 241, 503523, https://doi.org/10.1017/S0022112092002131.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, W. Paul Menzel, J. L. Franklin, and J. S. Lynch, 1992: The impact of satellite-derived winds on numerical hurricane track forecasting. Wea. Forecasting, 7, 107118, https://doi.org/10.1175/1520-0434(1992)007<0107:TIOSDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verri, G., N. Pinardi, D. Gochis, J. Tribbia, A. Navarra, G. Coppini, and T. Vukicevic, 2017: A meteo-hydrological modelling system for the reconstruction of river runoff: The case of the Ofanto river catchment. Nat. Hazards Earth Syst. Sci., 17, 17411761, https://doi.org/10.5194/nhess-17-1741-2017.

    • Search Google Scholar
    • Export Citation
  • Viterbo, F., and Coauthors, 2020: A multiscale, hydrometeorological forecast evaluation of national water model forecasts of the May 2018 Ellicott City, Maryland, flood. J. Hydrometeor., 21, 475499, https://doi.org/10.1175/JHM-D-19-0125.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2018: User’s guide for the Advanced Research WRF (ARW) modeling system, version 4.2, 464 pp., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.2/WRFUsersGuide_v42.pdf.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., J. Sheffield, M. B. Ek, J. Dong, N. Chaney, H. Wei, J. Meng, and E. F. Wood, 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, https://doi.org/10.1016/j.jhydrol.2014.02.027.

    • Search Google Scholar
    • Export Citation
  • Xue, M., J. Schleif, F. Kong, K. W. Thomas, Y. Wang, and K. Zhu, 2013: Track and intensity forecasting of hurricanes: Impact of convection-permitting resolution and global ensemble Kalman filter analysis on 2010 Atlantic season forecasts. Wea. Forecasting, 28, 13661384, https://doi.org/10.1175/WAF-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Yang, L., J. Smith, M. Liu, and M. L. Baeck, 2019: Extreme rainfall from Hurricane Harvey (2017): Empirical intercomparisons of WRF simulations and polarimetric radar fields. Atmos. Res., 223, 114131, https://doi.org/10.1016/j.atmosres.2019.03.004.

    • Search Google Scholar
    • Export Citation
  • Yin, D., Z. G. Xue, J. C. Warner, D. Bao, Y. Huang, and W. Yu, 2021: Hydrometeorology and hydrology of flooding in Cape Fear River basin during hurricane Florence in 2018. J. Hydrol., 603, 127139, https://doi.org/10.1016/j.jhydrol.2021.127139.

    • Search Google Scholar
    • Export Citation
  • Yin, D., D. F. Muñoz, R. Bakhtyar, Z. G. Xue, H. Moftakhari, C. Ferreira, and K. Mandli, 2022a: Extreme water level simulation and component analysis in Delaware estuary during Hurricane Isabel. J. Amer. Water Resour. Assoc., 58, 1933, https://doi.org/10.1111/1752-1688.12947.

    • Search Google Scholar
    • Export Citation
  • Yin, D., Z. G. Xue, D. Bao, A. RafieeiNasab, Y. Huang, M. Morales, and J. C. Warner, 2022b: Understanding the role of initial soil moisture and precipitation magnitude in flood forecast using a hydrometeorological modelling system. Hydrol. Processes, 36, e14710, https://doi.org/10.1002/hyp.14710.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., A. Onen, K. K. Yilmaz, and D. J. Gochis, 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 4966, https://doi.org/10.1016/j.jhydrol.2015.01.042.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Pu, and C. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145, 23432361, https://doi.org/10.1175/MWR-D-16-0421.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., P. Lin, S. Gao, and Z. Fang, 2020: Understanding the re-infiltration process to simulating streamflow in north central Texas using the WRF-Hydro modeling system. J. Hydrol., 587, 124902, https://doi.org/10.1016/j.jhydrol.2020.124902.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Spectral characteristics of turbulence in the hurricane boundary layer over the ocean between the outer rain bands. Quart. J. Roy. Meteor. Soc., 136, 918926, https://doi.org/10.1002/qj.610.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, https://doi.org/10.1175/MWR-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2009: From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model. Geophys. Res. Lett., 36, L03802, https://doi.org/10.1029/2008GL036854.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmos. Chem. Phys., 19, 14 28914 310, https://doi.org/10.5194/acp-19-14289-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2781 2781 0
Full Text Views 800 800 223
PDF Downloads 199 199 15